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Abstract. The metallographic structure reflects the specific internal morphology 

of metal materials and is closely related to the mechanical properties of materials. 

Due to the huge diversity and complexity of metallographic structures, it is diffi-

cult for traditional methods to identify them automatically and efficiently. In ad-

dition, the data samples of metallographic structures are usually small and unbal-

anced, which poses a great challenge to existing methods. To recognize metallo-

graphic structure effectively, a framework of metallographic structure recogni-

tion based on meta-transfer learning was proposed. Firstly, unsupervised pre-

training is carried out on large-scale data to obtain the backbone architecture of 

feature extraction to solve the problem of few-shot learning. Then, fine-tuning is 

adopted to improve the performance in the meta-testing phase, and data enhance-

ment is carried out on the support set to expand the query set, to solve the problem 

that the feature representation of learning cannot be generalized due to the incon-

sistent data distribution of new tasks. The results show that the meta-transfer 

learning framework can effectively identify complex few-sample metallographic 

structures. 

Keywords: Metallographic Structure, Small and Unbalanced, Meta-transfer 
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1 Introduction 

Metallographic structure analysis is an important method for studying metal materials, 

which has a crucial role in the field of materials science. A large number of studies have 

shown that the macroscopic characteristics of metal materials are determined by their 

microstructure. Such as the mechanical properties of materials. Analysis and study of 

the metallographic structure of metal materials, combined with the manufacturing pro-

cess and material properties, can provide the theoretical basis for researchers to guide 

the actual production and the development of new materials. However, the metallo-

graphic structure of metal materials is identified and evaluated by experts, and then it 
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is connected with the technological conditions and material properties. The accuracy of 

the results is greatly affected by human factors. Moreover, the metallographic structure 

data of metal materials are few, which requires a large number of electron microscopy 

experiments to obtain, which is an extremely time-consuming and labor-intensive pro-

ject, bringing huge difficulties to production and research. Therefore, in view of the 

above problems, how to apply advanced AI technology in the metallographic micro-

structure analysis of metal materials has become a hot research issue at present. 

At present, the metallographic analysis of metal materials mainly consists of manual 

observation of the sample with the electron microscope, and identification by contrast 

with the standard metallographic structure, to further analyze and evaluate the compo-

sition and state of the tissue. A. C. Souza et al. [1] employed a gray co-occurrence 

matrix to extract the metallographic structure features of steel and identified each form 

of metallographic structure of steel by using machine learning. Martin Mueller et al. [3] 

utilized crystallography and machine learning to achieve the classification of steel mi-

crostructure. However, the recognition of metallographic structures based on traditional 

machine vision technology needs to be combined with expert experience for feature 

extraction. Human intervention will lead to the loss of some important information and 

low efficiency, thus reducing the accuracy of recognition. 

In recent years, with the continuous development of computer image recognition 

technology, a new technical way has been opened up for research in the field of mate-

rials. Many researchers have used computer-aided metallographic analysis studies to 

identify and quantify metallographic structure by employing image processing tech-

niques. The recognition of metallographic structure is the premise and foundation of 

metallographic structure analysis and the core and key of automatic quantitative analy-

sis of metallographic structure. Paul et al. [3] proposed an improved stochastic forest 

classifier that can use a minimum number of trees for classification. A method of crystal 

structure recognition based on Bayesian deep learning has been proposed in the litera-

ture [4]. This method is robust to structural noise. Azimi et al. [5] proposed a classifi-

cation of mild steel metallographic structures based on a deep-learning approach. Li et 

al. [6] used convolutional neural networks to verify the accuracy of the automatic iden-

tification of steel microstructure under different metallographic microstructure prepro-

cessing methods. Naik et al. [7] proposed a supervised machine-learning method for 

the effective identification of phases (ferrite, pearlite, and martensite) in metallurgical 

ASTM A36 Heat-treated steel. By combining supervised and unsupervised machine 

learning techniques, De Cost et al. [8] utilized convolutional neural networks to classify 

subsets of the microstructure of high-carbon steel. 

All of the above methods are based on the identification of relatively simple metal-

lographic structures. At present, there are few reports on the automatic recognition of 

various complex metallographic structures with highly unbalanced data samples. To 

effectively identify the microstructure with few samples and imbalanced samples, a 

hybrid metallographic structure recognition framework based on meta-transfer learning 

is proposed in this paper. As the work of this paper is still in progress, the existing 

characteristics of this work are described as follows: 

1) A meta-transfer learning framework for metallographic structure recognition of 

a few samples is proposed, which carries out unsupervised pre-training on large-
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scale data to obtain backbone architecture for feature extraction to solve the 

problem of few-shot learning. 

2) In the process of meta-testing, the method of fine-tuning is adopted to improve 

the identification accuracy. Moreover, the support set of metallographic data is 

enhanced and the query set is expanded to solve the problem that the feature 

representation of learning cannot be generalized. 

The rest of this article is organized as follows. The second section introduces the 

framework and details of the proposed method. To verify the effectiveness and effi-

ciency of the proposed method, experimental design, and preliminary experimental re-

sults are given in Section 3. Section 4 is the conclusion and future work of this paper. 

2 The Proposed Method 
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Fig. 1. Meta-Transfer Learning Framework. 

We propose a meta-transfer learning framework for the metallographic structure recog-

nition of a few samples.  As can be seen from Figure 1, the implementation process of 

the meta-transfer learning framework mainly includes three stages, namely pre-train-

ing, meta-learning, and fine-tuning (FT). First, the self-supervised loss is used to pre-

train the features of the unlabeled Benchmark dataset with few samples, to obtain the 

backbone network architecture of feature extraction. Then, we use ProtoNet (PN) loss 

in meta-learning to conduct meta-training on the network backbone architecture of fea-

ture extraction for small sample tasks of labeling simulation, so that it can quickly adapt 

to a few tasks. Finally, the backbone network architecture of feature extraction after 

meta-training is deployed on a new small sample task, and the network structure and 

parameters are fine-tuned according to the enhanced data set of each metallographic 

organization category, so that the final recognition model can achieve the desired effect. 

2.1 Large-scale Pre-training of Feature Backbone 

In the case of computer vision tasks, large-scale pre-training is a very important task. 

Self-supervised learning algorithms [9] are a more mature pre-training method that re-

quires the network itself to learn to understand the visual world around it without any 

labels as a way to achieve self-supervised learning. DINO [10] is the most widely used 
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pre-training mechanism at present. Due to the flexibility of the DINO mechanism, it 

can be applied in traditional convolutional networks. Therefore, the DINO mechanism 

is adopted in this paper for pre-training. Then ResNet is used to obtain the backbone of 

feature extraction. 

2.2 Meta-learning with ProtoNet 
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Fig. 2. Prototypical Networks in the Few-Shot Scenario. 

A Few-Shot Learning (FSL) task can be used to quickly establish the ability to recog-

nize new concepts from just one or a few examples. At present, meta-learning is the 

main method to deal with small sample learning problems. A prototypical network 

(ProtoNet) [11] is one of the mainstream methods of meta-learning. As shown in Figure 

2, ProtoNet in the Few-Shot Scenarios. This network can identify new categories that 

have never been seen in the training process and requires only a small amount of sample 

data for each category. By constructing the feature mapping function fϕ, ProtoNet maps 

the sample data of dimension D to the space of dimension M and extracts their "mean 

value" to represent it as the primitive form ck of this class. Meanwhile, using Euclidean 

distance as the distance metric, Protonet trains the data of this class to be the closest to 

the primitive form representation of this class, while being far away from the primitive 

form representation of other classes. The training process is to minimize the objective 

function by stochastic gradient descent. The formula is expressed as follows: 
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where k is the real label of the training sample. ck is the prototype of class k. L(θ) is the 

objective function. 

During the test, softmax is applied to the distance between the test data query and 

the original data of each category to determine the category label of the test data. The 

expression of X belonging to class k is: 
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where d is the cosine distance. 

2.3 Meta-testing with Fine-tuning 

To maintain consistency with meta-training, the ProtoNet network of meta-training is 

directly deployed on the new task. Since the data of the new task is a category that has 

never been seen before, it may lead to the failure of generalization of the feature repre-

sentation of learning. Different from the previous use of support set data to fine-adjust 

the weight of the model, we adopt the data enhancement method to expand the support 

set data as query data, update the whole backbone network architecture, and achieve 

the ultimate purpose of identifying the metallographic organization structure. 

3 Experiments 

3.1 Dataset Description 

Metallographic structure image data was provided by a steel plant and obtained by data 

mining. Figure 3 shows part of the metallographic structure data. Due to the small scale 

of the obtained metallographic data, the metallographic structure data used in the paper 

was obtained by manual selection and cropping, and named MEM-25. The dataset con-

tains about 335 metallographic images in a total of 25 types. Among them, individual 

metallographic structure charts only a few maps. To facilitate training, set the size of 

the metallographic image is 224×224 pixels. We randomly divided 25 types of MEM-

25 datasets into 15 kinds of training, 5 kinds of validation, and 5 kinds of tests.  
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Fig. 3. Partial Chart of Metallographic Structure Data. 

3.2 Experimental Settings 

To validate the performance of the proposed few-sample metallographic tissue recog-

nition framework, two sets of experiments were conducted with mixed data (CIFAR-

FS [12] and MEM-25) and MEM-25, respectively. The whole experimental process is 

divided into three stages. Firstly, miniImageNet [13] is used as the pre-training dataset, 

and self-supervised loss is used to pre-train the unlabeled data to generate the feature 
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extractor. Then, two sets of experiments were conducted for the meta-learning process. 

The difference between the two experiments is that different datasets CIFAR-FS (64 

training, 16 validation, and 20 testing classes) and MEM-25 were selected respectively 

in the meta-training phase. The number of training tasks was set to 100 and validation 

tasks to 30. In the meta-testing phase, the data are chosen from the test data divided by 

MEM-25. For CIFAR-FS, the convention is to evaluate 5-way-1-shot (5w1s) or 5-way-

5-shot episodes, and the size of the query set for each episode is fixed to 15×5. Due to 

limited EME-25, we selected the 5-way-1-shot (5 represents the number of categories 

in the task and 1 represents the number of samples contained in each category) problem 

as the training and evaluation benchmark. The training epoch was set to 100. To eval-

uate the small-sample classification performance of the framework, 100 evaluation 

tasks were assigned from the divided test set. The evaluation indicator is the average 

classification accuracy of all test tasks. Finally, fine-tuning is utilized in the meta-test-

ing phase to achieve further improvement in the framework performance. In this pro-

cess, the meta-trained feature backbone is deployed on a new few-sample learning task, 

and the support set for each task is expanded using data augmentation to achieve per-

formance improvement.  

The entire experiment was implemented via Python 3.7, and Pytorch 1.8.0, on an 

RTX 3060 NVIDIA GPU. 

3.3 Results and Analysis 

As this work is still in progress, the adequacy of the experimental design is still insuf-

ficient. This section gives and analyzes the preliminary experimental results for the two 

groups of experiments. 

Mixed Samples Experiment. In this subsection, training samples from CIFAR-FS and 

test samples from MEM-25 were used for meta-learning to realize the recognition of 

metallographic structures. Firstly, the training data of the CIFAR-FS is used for meta-

training, and then the test data divided by MEM-25 is used for meta-testing. The feature 

extractor adopts a fixed feature backbone architecture, which is combined with Pro-

toNet to obtain the test results of metallographic structure recognition. To further im-

prove the recognition accuracy, the feature extractor in the meta-testing phase is fine-

tuned to optimize the recognition accuracy, to realize the purpose of accurately identi-

fying the metallographic structure. The experimental results are shown in Table 1. 

Table 1. Experiment results of mixed samples. 

Architecture Pre-Training Meta-Training(CIFAR-FS) MEM-25(5w1s) 

ResNet50 DINO(IN1K) ProtoNet(PN) 56.72% 

PN+FT 75.63% 

In the process of fine-tuning,  the model is optimized by adjusting the learning rate and 

other hyperparameters to adapt to the new small sample task. It can be seen from Table 

1 that the few-shot learning based on the fine-tuning method has higher recognition 

accuracy than meta-learning without fine-tuning method. Experimental results show 

the effectiveness of fine-tuning in the meta-testing phase. 
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MEM-25 Samples Experiment. Firstly, meta-training is conducted based on the train-

ing data of MEM-25, and then meta-testing is conducted using the test data divided by 

MEM-25 to obtain the test results of metallographic structure recognition. To further 

improve the recognition accuracy, the feature extractor in the meta-testing phase is fine-

tuned to optimize the recognition accuracy, to realize the purpose of accurately identi-

fying the metallographic structure. The experimental results are shown in Table 2. 

Table 2. Experiment results on MEM-25. 

Architecture Pre-Training Meta-Training(MEM-25) MEM-25(5w1s) 

ResNet18 - ProtoNet(PN) 59.63% 

PN+FT 83.24% 

ResNet50 - ProtoNet(PN) 58.20% 

PN+FT 85.08% 

ResNet50 DINO(IN1K) ProtoNet(PN) 65.36% 

PN+FT 90.72% 

As shown in Table 2, in the meta-testing phase, fine-tuning can effectively improve 

identification accuracy. Compared with Table 1, the experimental results show that in 

the meta-learning phase, image features can be effectively learned by using the same 

data set for training, and the prior knowledge learned in the training process can be 

effectively utilized to obtain higher accuracy in the testing process. For Table 2, differ-

ent feature backbones have different recognition accuracy. The more features that can 

be learned from the network backbone architecture used, the better the fine-tuning will 

be during the meta-testing process. 

Comparison with ProtoNet without DINO. To verify the effectiveness of the DINO 

method, sample data of MEM-25 is used to test the prototype network without DINO, 

and the experimental results are shown in Table 2. As can be seen from the table, the 

experimental result is lower than that of ProtoNet with DINO, which proves the effec-

tiveness of the DINO pre-training method. 

Comparison with traditional ProtoNet. To verify the effectiveness of the framework, 

the traditional ProtoNet is used to experiment on MEM-25, and the experimental results 

are shown in Table 3. As can be seen from the table, the accuracy of metallographic 

structure recognition is 65.47%. 

Table 3. Experiment results compared with traditional ProtoNet on MEM-25. 

Method MEM-25(5w1s) 
traditional PN 65.47% 

PN+FT 90.72% 
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4 Conclusion 

For the complexity of the material metallographic organization, few samples, and many 

unbalanced categories, this paper proposes a few-shot learning method for metallo-

graphic organization recognition. The method introduces transfer learning, which is ef-

fectively combined with meta-learning to achieve accurate recognition of metallo-

graphic organization under a few sample conditions. To further improve the recognition 

accuracy, a fine-tuning approach is utilized to optimize the feature extraction backbone 

architecture in the meta-testing phase. The experimental results show that the frame-

work can effectively identify metallographic structures, which is important for guiding 

the actual production and development of new materials. 

The work in this paper is still in progress, and in subsequent research, mathematical 

methods and optimization methods will try to be integrated into the framework to im-

prove the identification accuracy.  
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Reviewer #1 Summary 

The present paper is dedicated to the interesting topic of metallographic structure 

recognition. There are several questions which need to be resolved before the paper 

can be accepted for publication. 

Response to Reviewer #1 

We would like to express our appreciation to you for your insightful comments and 

valuable suggestions. Following your comments and suggestions, we have care-

fully revised our paper, and we think the revised paper has been much improved. 

 

Comment 1: Traditionally during microstructure investigations microstructures are 

analyzed with different magnification. However, authors are not mentioning in the 

text how the micrographs obtained with different magnification were treated. It’s 

also unclear how the particle sizes were taken into account. 

Response: Thank you for the valuable comment. In the revised manuscript, we have 

supplemented the data description section. In addition, the scale is annotated on the 

metallographic structure image in Figure 3. 

 

Comment 2: It’s unclear what kinds of units were used for the “size” 224x224. 

Response: Thank you for the valuable comment. In the revised manuscript, we have 

redescribed the size of the metallographic image. The “size” 224x224 refers to the 

pixel size of the image. 

 

Reviewer #3 Summary 

The paper is in principle on scope for DACOMSIN, addressing the theme of 

"knowledge discovery and machine learning in materials research." Specifically, it 

applies machine learning to the microstructure of metal materials by image analysis 

(presumably from electron microscopy). 

Response to Reviewer #3 

We would like to express our appreciation to you for your insightful comments and 

valuable suggestions. The following are our point-to-point responses to your com-

ments. 

 

Comment 1: Instead of "Literature [5]" it should be "Azimi et al. [5]". 

Response: Thank you for the valuable comment. We have replaced Literature [5] 

with Azimi et al. [5] in the third paragraph of the Introduction. 

 

Comment 2: The phrase "microstructure structures" appears redundant. 

Response: Thank you for the valuable comment. We have replaced microstructure 

structures with microstructure in the fourth paragraph of the Introduction. 

 

Comment 3: The use of the word "experiment" in the paper is confusing, since first 

there were electron microscopy experiments (not done by the authors), and then 

"experiments" with the data. 

Response: Thank you for the valuable comment. We have replaced experiments 

with electron microscopy experiments in the fourth paragraph of the Introduction. 



11 

All other experiments in this paper refer to machine learning data experiments. 
 


