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Abstract. The analysis of the composition and structure of high-temperature carbon steel 

and cast iron, particularly the distribution and content of the pearlite, is crucial for under-

standing its mechanical properties and overall performance. Existing computer-vision-

based methods for pearlite segmentation face challenges due to variations in metallo-

graphic images and the complex structure of  metallic materials. In this study, we intro-

duce a novel automatic segmentation method for pearlite segmentation in metallographic 

images, addressing the limitations of existing neural network-based methods and over-

coming the obstacles presented by metallographic image variations. First, a multiscale-

attention-based U-Net architecture is introduced as a backbone network, which selec-

tively focuses on spatial and channel-wise information at different scales, capturing richer 

hierarchical features. Additionally, an adaptive active contour model with self-tuning evo-

lution parameters is incorporated into the backbone network, dynamically adjusting the 

evolution parameters based on the input image characteristics. Furthermore, A new anno-

tated metallographic dataset called MHCSP is constructed, and experimental results re-

veal that the proposed approach achieves highly competitive segmentation results on 

metallographic images containing diverse structural compositions and varying magnifica-

tions. 

Keywords: Metallographic image, deep learning, pearlite segmentation, active contour 

model. 

1 Introduction 

The analysis of composition and structure, based on microscopic images of high-tem-

perature carbon steel and cast iron, is a vital aspect in the realm of materials science and 

product performance evaluation [1]. High-temperature carbon steel and cast iron, are 

composed of several elements, among which pearlite serves as a significant constituent. 

The distribution and content of pearlite in steel materials are critical factors that govern 

the mechanical properties of steel, such as strength, hardness, and toughness [2]. As a 
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result, the identification and segmentation of pearlite within these materials is essential 

for understanding their quality and performance characteristics. 

However, in pearlite segmentation tasks, existing computer-vision-based methods 

have shown limitations in handling various challenges inherent to the domain. One key 

challenge is the substantial variation in metallographic images, including differences in 

scale, texture, and illumination conditions. Due to their sensitivity to such variations, 

neural network-based methods may not be robust enough to cope effectively, leading 

to decreased segmentation accuracy. At the same time, the structure of carbon steel 

containing pearlite is often different, and the acquisition multiples of metallographic 

diagrams are often not uniform. As a result, existing methods may fail to deliver satis-

factory performance, particularly when it comes to accurately capturing the intricate 

boundary details in pearlite segmentation tasks. 

 

Fig. 1. Some examples of the self-built metallographic dataset MHCSP. The first and second 

columns are ferrite-pearlite images at different magnifications. The third and fourth columns are 

transformed ledeburite images at different magnifications. 

In recent years, there have been many studies attempting to use active contour mod-

els as a complementary technique to capture more accurate boundaries in semantic seg-

mentation tasks [3][4][5][6]. The active contour models, though a powerful tool for 

image segmentation, exhibits certain limitations that affect its performance in metallo-

graphic component segmentation tasks. A primary drawback is the dependence of mod-

els on fixed evolution parameters. Choosing an optimal set of parameters for diverse 

images with varying characteristics is challenging, which can lead to suboptimal per-

formance when applied to different image types without fine-tuning. Furthermore, the 

active contour model is sensitive to initial contour placement, which can result in con-

vergence to local minima rather than the desired global minimum, causing inaccurate 

segmentation.  

To address these challenges, we propose a more robust and automatic segmentation 

framework that can effectively handle the inherent complexities of metallographic im-

ages and deliver high-quality pearlite segmentation results. In particular, a novel mul-

tiscale-attention-based U-Net architecture is first introduced as a backbone network. 

Unlike the common U-Net with attention module [7][8], the key innovation lies in the 
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integration of multiscale attention modules within both the encoder and decoder parts 

of the U-Net, as well as in the skip connections and bottleneck layer. The multiscale 

attention mechanism enables the model to capture richer hierarchical features at differ-

ent scales by selectively focusing on relevant spatial and channel-wise information.  

Subsequently, an adaptive active contour model with self-tuning evolution parame-

ters is introduced and embedded in the backbone network. This adaptive model dynam-

ically adjusts the evolution parameters based on the characteristics of the input image. 

By employing this module, the framework refines the initial segmentation by evolving 

the contour to better adhere to the boundaries of the target objects, ensuring optimal 

segmentation performance without manual parameter tuning and intervention. In addi-

tion, A new metallographic dataset called MHCSP was constructed, all experiments 

were performed on them. Experimental results reveal that the proposed approach 

achieves highly competitive segmentation outcomes on metallographic datasets, en-

compassing diverse structural compositions and varying magnifications, in comparison 

to existing image segmentation algorithms. 

Overall, the key contributions of this paper are as follows: 

1. An automatic segmentation framework is proposed, which integrates an active 

contour model with an improved attention module into a deep learning framework 

that can effectively handle the inherent complexity of metallographic images. 

2. A multi-scale attention mechanism is introduced, which can selectively focus on 

spatial and channel information at different scales and capture richer hierarchical 

features. 

3. An adaptive active contour model with self-tuning evolution parameters is pre-

sented, which can dynamically adjust the evolution parameters based on different 

images. 

4. A self-built metallographic dataset has been constructed. Experimental results 

demonstrate that our approach can provide high-quality segmentation results. 

 

Fig. 2. Schematic of the proposed model. 
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2 Related Work 

2.1 Metallographic Image Segmentation 

Evolution in the field of metallographic image segmentation algorithms has seen a tran-

sition from traditional segmentation methods towards those based on neural networks. 

A novel watershed metallographic image segmentation algorithm was presented by 

Chen et al. [9], addressing the challenges of noise and regional texture features in metal-

lographic images through the integration of Bayesian rules and an enhanced similar 

region merging algorithm. Chen et al. [10] proposed an improved FCM metallographic 

image segmentation algorithm, which improves the noise resistance and operational 

efficiency by integrating the two-dimensional distance measurement function and the 

improved objective function into the traditional FCM algorithm. Li et al. [11] intro-

duced a metallographic image segmentation algorithm that leverages superpixels and 

transfer learning. An advanced SNL-UNet image segmentation network was suggested 

by Zhang et al. [12] that merges an enhanced non-local attention block with U-Net to 

address the accuracy issues caused by metallographic images captured from various 

angles and positions. Despite their success in certain tasks, these algorithms predomi-

nantly focus on local or pixel-level attributes of the object, often disregarding its geo-

metric properties. Such issues induce limitations in the precision and operational effi-

ciency of the segmentation algorithms, frequently resulting in an inability to accurately 

outline the boundary specifics of objects during identification. 

2.2 Active Contour Model 

The active contour algorithm is widely employed in image segmentation tasks due to 

its rapid convergence speed and capability to consider the geometric and contour fea-

tures of objects comprehensively. Chan and Vese [13] first proposed an image segmen-

tation algorithm independent of gradient information, constructing energy functions us-

ing regional features and paving a new direction for active contour algorithms. Zhang 

et al. [14] introduced an improved level set segmentation algorithm, combining meth-

ods such as the maximum likelihood energy function and modeling objects as Gaussian 

distributions to address uneven intensity in segmented images. Ma et al. [15] presented 

a new multi-scale driven active contour segmentation model based on multimodal im-

ages, merging random forest and active contour model. Liu et al. [16] proposed a novel 

active contour segmentation algorithm for SAR images, integrating region-based and 

edge-based active contour models to solve edge detection problems under varying ini-

tial scales. Hoogi et al. [17] introduced an active contour parameter adaptation method 

that adaptively adjusts parameters and window size based on convolutional neural net-

work (CNN) output and the size and texture of objects, achieving satisfactory segmen-

tation performance in low-contrast and low-resolution images. Nevertheless, factors 

such as the consideration of pixel-level features, contour initialization, and evolutionary 

parameter settings affect the segmentation performance of the active contour algorithm 

to some extent. 
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3 Proposed Methods 

3.1 Multiscale-attention-based Backbone Network 

In this work, a novel multiscale-attention-based U-Net architecture is first proposed for 

robust and efficient image segmentation. The original U-Net [18], while proven to be 

highly effective in various segmentation tasks, has some limitations. One key short-

coming is its inability to selectively focus on relevant features at different spatial scales 

and channel-wise information. The integration of attention mechanisms [19] has been 

proposed in several variants of U-Net to address these limitations; however, most ex-

isting attention-based U-Net models incorporate attention modules only in specific 

parts of the network, such as skip connections or after certain convolutional layers. 

Consequently, these models may not fully exploit the potential of attention mechanisms 

across the entire network hierarchy. 

 

 

Fig. 3. Structure of single attention mechanism. 

To overcome these limitations, our multiscale-attention-based U-Net introduces 

multiscale attention modules in both the encoder and decoder parts, as well as in the 

skip connections and bottleneck layer. These attention modules enable the model to 

selectively focus on the most relevant spatial and channel-wise information at various 

scales and levels of abstraction, leading to improved feature extraction and representa-

tion. 

In the encoder part, after each convolutional layer, we add a multiscale attention 

module that combines self-attention and channel attention mechanisms, followed by 

the down-sampling operation. This allows the model to effectively capture and utilize 

different feature scales during the encoding process. In the decoder part, we perform 

the up-sampling operation and incorporate the multiscale attention module after each 

up-sampling layer. The output of the attention module is then concatenated or added to 

the corresponding feature map from the encoder through skip connections, enabling the 

decoder to refine the segmentation results by leveraging attention-weighted high-reso-

lution features. Additionally, we include a multiscale attention module in the bottleneck 

layer, further enhancing feature extraction by capturing the most relevant contextual 

information across different scales. This is crucial for accurate segmentation, especially 

in cases where the target structures exhibit significant variations in scale, shape, or ap-

pearance. 
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By leveraging multiscale attention mechanisms throughout the U-Net architecture, 

our proposed model exhibits several key advantages compared to the original U-Net 

and other attention-based U-Net variants. First, it effectively captures and utilizes the 

most relevant features at multiple scales and levels of abstraction, leading to improved 

segmentation performance. Second, the multiscale attention modules provide the model 

with a more flexible and adaptive feature representation, allowing it to handle complex 

and challenging segmentation scenarios. Finally, the integration of attention mecha-

nisms in the entire network hierarchy ensures that the model is better equipped to deal 

with scale variations and other challenging characteristics often encountered in real-

world image segmentation tasks. 

3.2 Adaptive Active Contour 

In order to further capture the fine edges of the segmented objects, the idea of active 

contours is considered to be added to the proposed segmentation framework. The active 

contour model is a widely-used technique for image segmentation and object boundary 

extraction. The main idea behind the active contour model is to represent the contour 

of an object in an image as a parametric curve that deforms under the influence of in-

ternal and external forces. These forces are carefully designed to ensure that the contour 

converges to the desired object boundary. The Chan-Vese (CV) model [9], proposed 

by Tony F. Chan and Luminita A. Vese in 2001, is a popular variant of the active con-

tour model. The CV model is particularly effective in segmenting images with a piece-

wise constant structure, where the object and background regions have relatively uni-

form intensities. In the CV model, the energy function is defined by the following equa-

tion: 

𝐹(𝑐1, 𝑐2, 𝜙) = 𝜇 ∫ 𝛿(𝜙(𝑥, 𝑦))
 

𝛺

|𝛻𝜙(𝑥, 𝑦)| 𝑑𝑥 𝑑𝑦

+𝜈 ∫ 𝐻(𝜙(𝑥, 𝑦))
 

𝛺

𝑑𝑥 𝑑𝑦

+𝜆1 ∫ |𝑢0(𝑥, 𝑦) − 𝑐1|2
 

𝛺

𝐻(𝜙(𝑥, 𝑦)) 𝑑𝑥 𝑑𝑦

+𝜆2 ∫ |𝑢0(𝑥, 𝑦) − 𝑐2|2
 

𝛺

(1 − 𝐻(𝜙(𝑥, 𝑦))) 𝑑𝑥 𝑑𝑦. （1）

 

In this context, the first two terms act as regular constraints on the length and area 

of the curve. The third term (internal force) is responsible for preserving the smoothness 

and regularity of the contour, ensuring it does not become overly stretched or bent. 

Conversely, the fourth term (external force) is derived from the image data and guides 

the contour towards the desired object boundary, accounting for features such as edges, 

gradients, and textures. 

While the CV model has proven to be a powerful tool for image segmentation, it is 

not without its limitations. One of the primary drawbacks of the CV model is its reliance 

on fixed evolution parameters. These parameters, such as the weighting coefficients for 

the data fitting and regularizing terms, play a crucial role in the segmentation results. 

However, choosing a single set of optimal parameters for diverse images with varying 
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characteristics is a challenging task. Consequently, the performance of the CV model 

may be suboptimal when applied to different types of images without fine-tuning the 

parameters for each specific case. 

To address these limitations, we extend the approaches in [20][21] and propose an 

adaptive CV model with self-tuning evolution parameters. This adaptive model dynam-

ically adjusts the evolution parameters based on the characteristics of the input image, 

ensuring optimal segmentation performance without manual intervention. This adap-

tive mechanism is defined by the following equation: 

𝜆1(𝑥, 𝑦) = 𝑒𝑥𝑝 (
2 − 𝑃𝑠𝑒𝑔(𝑥, 𝑦)

1 + 𝑃𝑠𝑒𝑔(𝑥, 𝑦)
), 

 𝜆2(𝑥, 𝑦) = 𝑒𝑥𝑝 (
1 + 𝑃𝑠𝑒𝑔(𝑥, 𝑦)

2 − 𝑃𝑠𝑒𝑔(𝑥, 𝑦)
),                                         (2) 

where 𝜆1(𝑥, 𝑦) and 𝜆2(𝑥, 𝑦) represent variable parameter functions. The curve expands 

at coordinates (x, y) when  𝜆2(𝑥, 𝑦) < 𝜆1(𝑥, 𝑦).𝑃𝑠𝑒𝑔 denotes the output of the backbone 

network. Therefore, according to (2), the energy F can be rewritten as 

𝐹(𝑐1, 𝑐2, 𝜙) = 𝜇 ∫ 𝛿(𝜙(𝑥, 𝑦))
 

Ω

|∇𝜙(𝑥, 𝑦)| 𝑑𝑥 𝑑𝑦

+𝜈 ∫ 𝐻(𝜙(𝑥, 𝑦))
 

Ω

𝑑𝑥 𝑑𝑦

+𝜆1(𝑥, 𝑦) ∫ |𝑢0(𝑥, 𝑦) − 𝑐1|2
 

Ω

𝐻(𝜙(𝑥, 𝑦)) 𝑑𝑥 𝑑𝑦

+𝜆2(𝑥, 𝑦) ∫ |𝑢0(𝑥, 𝑦) − 𝑐2|2
 

Ω

(1 − 𝐻(𝜙(𝑥, 𝑦))) 𝑑𝑥 𝑑𝑦, (3)

 

with 

𝐻(𝑧) = {
1,   𝑖𝑓 𝑧 ≥ 0
0, 𝑖𝑓 𝑧 < 0,

𝛿0(𝑧) =
𝑑

𝑑𝑧
𝐻(𝑧)                              (4) 

where H and δ represent the Heaviside function and the Dirac metric, respectively. Ac-

cording to (2)(3)(4), the evolution equation can also be written as 

{

𝜕𝜙

𝜕𝑡
= |∇𝜙|𝑑𝑖𝑣 (

∇𝜙

|∇𝜙|
) ,   𝑡 ∈ (0, ∞),   𝑥 ∈ ℝ2

𝜙(0, 𝑥, 𝑦) = 𝜙0(𝑥, 𝑦),    𝑥 ∈ ℝ2.

                         (5) 

By incorporating an adaptive mechanism, the model becomes more robust and can 

handle a broader range of image types and conditions. Moreover, the adaptive CV 

model can potentially reduce the sensitivity to initial contour placement, improving the 

likelihood of converging to the correct global minimum. The enhanced flexibility and 

adaptability of the proposed model make it a promising solution for a variety of image 

segmentation tasks, paving the way for more accurate and efficient segmentation results 

across diverse applications. 
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3.3 Hybrid Segmentation Framework 

The proposed hybrid segmentation framework is illustrated in Fig. 2. The motivation 

behind this framework is to leverage the strengths of both the backbone network and 

the parametric adaptive CV model to achieve high-quality segmentation results. Ini-

tially, the backbone network is trained using pixel-level annotations to generate the 

preliminary segmentation predictions. The multiscale attention mechanism within the 

U-Net architecture enables the network to capture contextual information and focus on 

relevant regions in the image, resulting in more accurate and detailed segmentation out-

comes. 

Following this, the predicted segmentation results are fed into the parametric adap-

tive CV model, where the contour of the predicted foreground region serves as the ini-

tial contour. By employing this model, the framework refines the initial segmentation 

by evolving the contour to better adhere to the boundaries of the target objects. The 

parametric adaptability of the CV model ensures optimal performance across diverse 

images without the need for manual parameter tuning. 

The visualized evolutionary result produced by the active contour module serves as 

the final segmentation output, providing refined and accurate delineation of the target 

objects in the image. The proposed framework effectively combines the strengths of 

both the multiscale-attention-based U-Net and the adaptive CV model, paving the way 

for improved segmentation performance across a wide range of applications. This in-

novative approach demonstrates the potential of integrating deep learning-based seg-

mentation techniques with classical methods, resulting in a powerful and versatile so-

lution for challenging image segmentation tasks. 

4 Experiments 

4.1 Dataset 

In this study, the task involves pixel-level segmentation of pearlite in high-temperature 

carbon steel metallographs. Due to the lack of publicly available metallographic da-

tasets with pixel-level labels, a new dataset called MHCSP was constructed, comprising 

60 self-collected metallographic images of high-temperature carbon steel containing 

pearlite. Relevant experts provided manual pixel-level annotations. To evaluate the per-

formance of the proposed method on pearlite segmentation in different microstructure 

images, the MHCSP dataset includes 30 ferrite-pearlite microstructure images and 30 

transformed ledeburite images. The transformed ledeburite is composed of pearlite and 

cementite at temperatures below 727 ℃. Considering the varying resolutions and mag-

nifications of electron microscope images, the MHCSP dataset employs metallographic 

images with different magnifications to ensure the generalization capability the pro-

posed method. Some examples are shown in Fig. 1. The experimental setup comprises 

40 training images, 10 validation images, and 10 test images. 
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4.2 Experimental Setup 

Implementation Details. The proposed model is implemented using the PyTorch 

framework. The network was trained on an NVIDIA GTX 1080 GPU with a batch size 

of 2, employing the Adam optimizer with a learning rate of 1e-4 and a weight decay of 

1e-5. The model was trained for 100 epochs with early stopping based on the validation 

loss to avoid overfitting. During training, standard data augmentation techniques, in-

cluding random horizontal flipping, vertical flipping, and rotation, were employed to 

increase the diversity of the training set and improve the generalization capabilities of 

models. The loss function chosen for training our model was a combination of categor-

ical cross-entropy and the Dice loss, which encourages the model to focus on both the 

pixel-wise classification and the spatial coherence of the segmented regions. 

Evaluation Metrics. To assess the performance of our proposed segmentation model, 

we selected the mean Intersection over Union (mIoU) as the primary evaluation metric. 

The mIoU is a widely used evaluation criterion in image segmentation tasks as it pro-

vides a comprehensive measure of the ability of models to accurately predict the target 

regions, accounting for both false positives and false negatives. Additionally, it is less 

sensitive to class imbalance issues, which are common in segmentation tasks.  

4.3 Results and Comparisons   

This study aims to compare the performance of five distinct models for image segmen-

tation. The models include PSPNet [22], SegNet [23], FCN8s [24], DeepLabv3+ [25], 

U-Net [18], and our proposed model. Each of these models employs specialized tech-

niques and strategies to tackle the challenges associated with image segmentation. 

Results on Ferrite-pearlite Images in MHCSP Dataset: The experimental results are 

displayed in Fig. 4. It is can be seen that PSPNet [22] faces challenges in delineating 

target contours precisely, while SegNet [23] exhibits a tendency to overestimate the 

extent of certain targets. FCN8s [24] is constrained by its capacity to identify the local 

scope of specific targets, leading to partial segmentation. DeepLabv3+ [25], in some 

cases, produces noisy segmentation results, affecting the overall quality of the output. 

U-Net [18], on the other hand, struggles with preserving fine-grained details and main-

taining accurate boundaries between adjacent objects. In stark contrast, the proposed 

model showcases remarkable performance in addressing these limitations, delivering 

accurate and reliable segmentation results. Not only does the proposed model precisely 

delineate target contours, but it also maintains the appropriate scale of segmented tar-

gets, ensuring accurate localization of the full extent of objects. Additionally, the pro-

posed model effectively preserves intricate details and establishes clear boundaries be-

tween neighboring objects, contributing to the overall quality of the segmentation out-

put. 

As for quantitative metrics, Table I shows the mIoU values for PSPNet [22], SegNet 

[23], FCN8s [24], DeepLabv3+ [25], and U-Net [18] to be 79.62%, 90.61%, 42.19%, 

80.12%, and 90.47%, respectively. The mIoU value of the proposed model is signifi-

cantly higher, indicating its superior performance in the segmentation task. This ad-

vantage is further supported by qualitative visualizations of the segmentation results, 
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where the proposed model consistently generates more accurate and precise contours 

compared to the other models. Upon analyzing the experimental findings, it becomes 

clear that the proposed model excels over the other models in various aspects, including 

accuracy, stability, and effectiveness. 

 

 

Fig. 4. Comparisons of segmentation results on MHCSP dataset. (a) Image. (b) Ground truth. 

(c) Our model. (d) PSPNet. (e) SegNet. (f) FCN8s. (g) DeepLabv3+. (h) U-Net. 

Table 1. Quantitative results on the MHCSP dataset 

Methods 
Ferrite-pearlite 

Images (mIoU) 

Transformed ledeburite Im-

ages (mIoU) 

PSPNet [22]     79.62% 84.33% 

SegNet [23]     90.61% 91.80% 

FCN8s [24]     42.19% 90.22% 

DeepLabv3+ [25]     80.12% 89.52% 

U-Net [18]     90.47% 89.43% 

Our method     95.75% 96.31% 

Results on Transformed ledeburite Images in MHCSP Dataset: The experimental 

results are illustrated in Fig. 5. It is can be seen that PSPNet [5-1] encounters difficulties 

in accurately identifying thin structures, while SegNet [5-2] tends to merge closely 

spaced targets, leading to imprecise segmentation. FCN8s [5-3] exhibits reduced per-

formance in distinguishing between similar textures, resulting in confusion between 

different objects. DeepLabv3+ [5-4], in certain instances, generates oversmoothed 

boundaries, compromising the overall sharpness of the outputs. U-Net [19], conversely, 

has trouble in managing occlusions and coping with variations in object appearances. 

In marked contrast, the proposed model demonstrates outstanding capabilities in 
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overcoming these challenges, yielding precise and reliable segmentation outcomes. The 

proposed model not only excels in detecting thin structures but also effectively sepa-

rates closely spaced targets. It adeptly distinguishes between objects with similar tex-

tures and copes with variations in object appearances. Furthermore, the proposed model 

maintains sharp boundaries and handles occlusions gracefully, contributing to the high-

quality segmentation results. 

Regarding quantitative metrics, as depicted in Table I, the mIoU values for PSPNet 

[5-1], SegNet [5-2], FCN8s [5-3], DeepLabv3+ [5-4], and U-Net [19] are 84.33%, 

91.80%, 90.22%, 89.52%, and 89.43%, respectively. In comparison, the mIoU value 

for the proposed model is substantially higher, reflecting its superior performance in 

the segmentation task. This advantage is further corroborated by the qualitative visual-

izations of the segmentation results, where the proposed model consistently generates 

more accurate and refined contours compared to the other models. Upon examining the 

experimental results, it is apparent that the proposed model outshines the competing 

models in various aspects, including precision, robustness, and adaptability. This suc-

cess stems from the inventive methods and strategies implemented by the proposed 

model, which adeptly address the challenges inherent in pearlite segmentation tasks. 

 

Fig. 5. Comparisons of segmentation results on MHCSP dataset. (a) Image. (b) Ground truth. 

(c) Our model. (d) PSPNet. (e) SegNet. (f) FCN8s. (g) DeepLabv3+. (h) U-Net. 

4.4  Discussion and Analysis 

To validate the sensitivity of the proposed method to the number of training images, a 

comprehensive series of experiments were conducted to study in more depth the per-

formance of our method with different numbers of training samples. Specifically, five 

distinct experimental configurations were conducted across two diverse datasets, each 

varying in the number of images allocated to the training set. The experimental results 

are shown in Table 2, where Configuration indicates the ratio of training set, test set 

and validation set. Intriguingly, these results reveal that the model's performance 
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metrics mIoU exhibited only marginal fluctuations across the different configurations. 

This stability in the face of varying training set sizes lends credence to the robustness 

of our approach for semantic segmentation of metallography components. It suggests 

that the feature representations captured by our architecture are sufficiently generaliza-

ble, negating substantial overfitting or underfitting, regardless of the training sample 

number.  

Table 2. Dataset Performance Metrics mIoU across the Different Configurations 

Configurations 
Ferrite-pearlite 

Images (mIoU) 

Transformed ledeburite Im-

ages (mIoU) 

20:5:5     95.75% 96.31% 

16:7:7     93.97% 96.02% 

14:8:8     94.32% 96.38% 

12:9:9     93.56% 93.83% 

10:10:10     93.14% 96.03% 

 

5 Conclusion 

In this paper, we presented a robust and automatic segmentation method for pearlite 

segmentation in metallographic images, overcoming the limitations of existing neural 

network-based methods. The proposed approach integrates a multiscale-attention-

based U-Net architecture with an adaptive active contour model, allowing the frame-

work to effectively handle the inherent complexities of metallographic images and de-

liver high-quality segmentation results. The experimental evaluation, conducted on a 

newly constructed metallographic dataset, validates the effectiveness and robustness of 

the proposed framework. This study contributes to the advancement of image segmen-

tation techniques in the domain of metallographic imaging and has the potential to fur-

ther enhance the analysis of metallographic structures. 
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