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Abstract. With the discovery of graphene with many excellent properties, there 

has been an upsurge in the exploration of two-dimensional (2D) materials in the 

scientific and industrial circles, and has promoted the development of many 2D 

materials with excellent properties in the research fields such as energy, photo-

catalysis, microelectronics and photonics. In order to continue to explore and 

discover new 2D materials with novel properties, using big data and machine 

learning methods to screen promising candidate materials is a practical means 

to accelerate the discovery of new materials. In this paper, we exploit deep 

learning techniques based on convolutional neural networks (CNN) to identify 

thermodynamically stable 2D materials, which is the first fundamental require-

ment for any application. The proposed method does not need to know the spa-

tial structure information of the materials. It only constructs the feature space 

map based on the properties and structural symmetry of the constituent ele-

ments of the compound, and then inputs it into a specially designed 2DMs-

ResNet network to realize the discrimination and prediction of the thermody-

namic stability. Experimental results show that the proposed method has strong 

generalization performance and satisfactory prediction accuracy. 

Keywords: 2D materials, Machine learning, CNN, Thermodynamic stability, 

Feature space map. 

1 Introduction 

With the successful preparation of graphene [1] nano two-dimensional (2D) materials 

with many excellent characteristics, and won the Nobel Prize in Physics in 2010, the 

research and exploration of 2D materials ushered in a blowout development. Subse-

quently, a series of other 2D materials with excellent performance have been devel-

oped, such as BN, MoS2, WS2, MoSe2, WSe2, MXene materials, and transition met-

al carbides. They can be not only conductors, semiconductors, or insulators, but even 

superconductors, opening new research paths and directions for many existing fields, 

especially energy, photo/electrocatalysis, microelectronics, and photonics. For the 
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discovery of new 2D materials and the establishment of related databases, many ex-

cellent works have emerged in recent years. Starting from 108,423 experimentally 

known 3D compounds, Mounet et al. [2] used van der Waals density functional theory 

(DFT) for high-throughput calculations and identified 1,825 compounds that are ei-

ther easily or potentially exfoliable. Haastrup et al. [3] created the Computational 2D 

Materials Database (C2DB), which contains a variety of structural, thermodynamic, 

electronic, magnetic, and optical properties for around 4,000 2D materials. Zhou et al. 

[4] proposed 2DMatPedia, a large dataset with structural, energy, and electronic prop-

erties of more than 6,000 2D materials, through top-down and bottom-up approaches. 

Based on the high-throughput calculation of DFT, Fukuda et al. [5] constructed a 

database of AB2-type monolayer structure maps for 3,844 compounds and obtained 

the comprehensive structural trends of these compounds in 2D structures through 

symmetry-unconstrained geometry optimizations, which provided a new perspective 

for finding unknown 2D materials. Fabian et al. [6] proposed a Quantum Point Defect 

Database (QPOD) including 503 intrinsic point defects in 82 different 2D semicon-

ductors and insulators, which provides a reference for the application of promising 

defects in quantum technology. Yao et al. [7] selected and evaluated 19 2D materials 

with high mobilities at room temperature and good dynamic stability based on the 

MatHub-2d database, using bandgap, magnetism, elasticity, and deformation potential 

as search criteria, which provided an opportunity for the preparation of new semicon-

ductor electronic devices. 

However, the above works show that many 2D materials are mainly calculated by 

DFT, and the exploration of new 2D materials is usually only selected and tried from 

a limited number of possible categories according to the required material properties, 

which makes the exploration space very limited. After obtaining a promising new 

material, it is also necessary to evaluate whether the material's properties meet the 

expected requirements and its thermodynamic stability, which is the first fundamental 

requirement for most possible applications [8]. Unfortunately, the number of 2D ma-

terials candidates obtained by high-throughput screening is limited and may not be 

stable. 

Fortunately, with the development of artificial intelligence technology, data-driven 

deep learning technology provides a new research paradigm for the field of materials. 

In view of the primary basic requirement for the application of new materials, which 

is to have good thermodynamic stability, this paper proposes a deep learning technol-

ogy based on convolutional neural network (CNN) to identify the thermodynamic 

stability level of 2D materials. In particular, the method does not need to know the 

spatial structure information of the materials, only the properties and structural sym-

metry of the constituent elements of the compounds are used to construct the feature 

space map, and then input into a specially designed 2DMs-ResNet network to realize 

the discrimination and prediction of thermodynamic stability. Since this work is still 

in progress, the existing features of this work are described as follows. 

1) Based on the properties of the elements in the compound, we construct a feature 

space map for the input of the neural network. 

2) A lightweight residual neural network structure named 2DMs-ResNet is built to 

predict the thermodynamic stability of 2D materials. 
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2 The Proposed Method 
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Fig. 1. The framework diagram of the method. 

The framework diagram of the proposed method is shown in Fig. 1, which takes the 

data parsing technique as the core. Firstly, according to the formula of the material, 

the framework uses the information of each element in the periodic table and the con-

structed feature space to generate the feature space map and then uses it as the input 

of the neural network. It should be noted that different 2D materials with different 

thermodynamic stability may have the same formula, as isomers, their differences are 

reflected in the 3D structure. In this case, if only the feature space map is used for 

classification, it will lead to misjudgment. Therefore, the proposed method takes the 

prototype of materials as an important classification feature and uses the idea of word 

Embedding [9] in natural language processing to map it into special feature vectors. 

Finally, the vector concatenated by the prototype feature vector and the image feature 

vector is mapped to different thermodynamic stability levels through the fully con-

nected layer of the network. The specific implementation details of the proposed 

method are described in the following. 

2.1 Feature space 

To construct the material feature space map, from the above, we first need to find the 

properties that each element of the compound has in the periodic table. Here we se-

lected attributes as shown in Table 1. 

Table 1. Properties of atoms. 

Property Description Property Description 

Z atomic number ε, І 
electron affinity and ionization 

potential 

Ρ Pauling electronegativity η, ζ 
highest-occupied and lowest-

unoccupied Kohn-Sham eigenvalue 

ϑ periodic group r atomic nonbonded radius 

v, α valence, polarizability rv 
radius of the last occupied valence 

orbital 

ϕ unfilled valence orbitals rs, rp extensions of the s and p orbitals 
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As the core of constructing the feature space map, we define the feature space as 

shown in Table 2. Next, according to the atomic properties in Table 1, and using a 

variety of statistical operators given in Table 2, the detailed characteristics of com-

pounds are calculated. Specifically, for a material formed by ns species of atoms and 

N atoms in the unit cell. Finally, these characteristics are constructed into a 2D matrix, 

and the corresponding feature space map of the material is obtained.  

Table 2. Feature space, constructed using each of the χ properties in Table 1. 

Feature Description Feature Description 
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2.2 2DMs-ResNet 
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Fig. 2. The structure of 2DMs-ResNet. 
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Fig. 2 shows the 2DMs-ResNet network designed in this paper. According to the fig-

ure, the main body of the network consists of a convolutional layer (Conv 7×7), a 

Max pooling layer (Max pool), four residual blocks (Res-block), an average pooling 

layer (Avg pool), and a fully connected (FC) layer. The structure of the Res-block can 

also be known from the figure, which is mainly composed of two different types of 

convolutional layers (Conv 3×3) and a SE-block. In addition, it comes with the Batch 

Normalization Layer (BN) and ReLu activation unit common in CNN. SE-block is an 

attention mechanism module proposed in SENet [10], which can selectively strength-

en important features and compress unimportant features in the network and enhance 

the extraction of features between channels. Its specific structure can also be clearly 

obtained from Fig. 2. 

3 Experimental Design 

To verify the effectiveness of the proposed method, it is a common and convincing 

means to conduct relevant experiments by selecting widely recognized benchmark 

datasets. Therefore, based on the above ideas, the experimental design of this paper is 

described below. 

3.1 Benchmark 

In this paper, the C2DB with accessed version (2018-12) is selected as the benchmark 

to realize the construction of 2D material thermodynamic stability prediction model. 

The database is of considerable size, containing structural, thermodynamic, elastic, 

electronic, magnetic, and optical properties of about 4000 2D materials distributed 

over more than 40 different crystal structures, and has been widely used in several 

excellent works. The properties are calculated by DFT and many-body perturbation 

theory. 

The materials in the C2DB are divided into different prototype categories. In our 

experiment, we selected the AuSe, BN, BiTeI, C2F2, CdPS3, CdI2, CuI, CoH2O2, 

FeOCl, FeSe, GaS, GeS2, MoH2, MoS2, MoSSe, PbSe, PdSe2, ReS2, Ga2S2, TiS3, 

WTe2, and HfSCl. For the levels of thermodynamic stability, the database identifies 

them as numbers 1, 2, and 3, representing the three levels of low, medium, and high, 

respectively. The criterion of this level is defined by the corresponding formation 

energy (ΔHf) and the energy above the convex hull (ΔHhull) of the material, that is, the 

material with non-negative ΔHf has low thermodynamic stability. For ΔHf is negative 

and ΔHhull > 0.2eV/atom, the stability is considered medium, while stability is consid-

ered high if ΔHhull is negative and ΔHf < 0.2eV/atom. Moreover, since magnetic order 

is an additional degree of freedom that affects the learning of structural stability, we 

restrict our study to non-magnetic materials. Finally, compounds with extreme behav-

ior are considered during training, that is, those that are clearly defined within the 

limits of the low, medium, and high levels. Thus, we separate compounds with ΔHf 

between -0.1 and 0.1 eV/atom and with ΔHhull between 0.1 and 0.3 eV/atom. After the 

above screening process, we obtained 1,310 compounds for experiments and divided 

them into training, validation, and test data sets according to the ratio of 8:1:1. 
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3.2 Parameter Settings 

In the 2DMs-ResNet structure, we first set the number and size of filters for Conv 7×7 

to 32 and 7×7 with a step size of 2, and for Max pool to 3×3 with a step size of 2. 

Next, the number of filters for the next four Res-blocks is set to 32/64/128/256 with a 

step size of 1/2/2/2. Moreover, for each Res-block, the size of both filters is 3×3, and 

the group parameter of the second filter is set to 8. Finally, the number of neurons in 

the FC layer is set to 512 because its input is the concatenation of the Avg pool output 

and the prototype vector (the dimension of the embedding layer is set to 256). Based 

on the conventions of the deep learning community, during the training process of the 

2DMs-ResNet, we use the AdamW optimizer and Cross-Entropy loss function; the 

batch size is set to 8; the learning rate (lr) is set to 1×10-3; the learning rate update 

strategy is set as OneCycleLR, the maximum learning rate in the strategy is set as 5 

times of the initial lr, the total number of iteration rounds is set as 270, and the pro-

portion of the rising learning rate is 20%; the total number of network training epochs 

is set to 250. 

4 Experimental Results and Analysis 

Since this work is still in progress and the experimental design is insufficient in terms 

of adequacy, this section only presents and analyzes the experimental results of the 

preliminary design, which are presented and analyzed as follows. 

4.1 Effectiveness of 2DMs-ResNet 

 

Fig. 3. Loss curve and accuracy curve. 

Fig. 3(a) shows the Train_loss and Val_loss curves of 2DMs-ResNet during the train-

ing process. By analyzing the trend of the loss curves, we can see that 2DMs-ResNet 

not only fits the training set very well, but also performs quite well on the validation 

set. This shows that the method of constructing the space feature map and then using 

2DMs-ResNet to predict the thermodynamic stability of materials has considerable 

feasibility and effectiveness. By the way, it also reflects the good feature extraction 

ability and generalization performance of the designed 2DMs-ResNet. In addition, 

during the training, we also continuously evaluate the performance of the model ob-
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tained from each training epoch on the test set. From the accuracy curve shown in Fig. 

3(b), we can conclude that the trained model has a good effect on predicting the ther-

modynamic stability of unknown 2D materials, and its prediction accuracy eventually 

exceeds 90%. 

 

Fig. 4. ROC curve. 

Receiver Characteristic Operator (ROC) curve is a common indicator used to verify 

the performance of a classifier model, which can well evaluate the overall classifica-

tion effectiveness of the model. The ROC curve of the model constructed by the pro-

posed method with respect to the test set is shown in Fig. 4. Through the analysis, it 

can be concluded that the trained model has good predictive ability for different levels 

of thermodynamic stability. However, from a subtle point of view, the prediction 

performance of the medium level is at a disadvantage compared to the other two lev-

els. This indicates that the material with medium stability level has greater uncertain-

ty, and it may also have similar characteristics with the other two levels, so it is more 

difficult to distinguish. 

5 Summary 

Aiming at the prediction of 2D material thermodynamic stability, this paper proposes 

a method to construct the material’s feature space map and designs a lightweight re-

sidual neural network structure 2DMs-ResNet for realizing the prediction of material 

thermodynamic stability level. Preliminary experimental results show that the pro-

posed method has excellent performance. 

This work is still in progress. In the future, we will focus on improving the feature 

space we have constructed so far, as well as trying to incorporate some mathematical 

methods and optimization methods into our work. In addition, collecting and search-

ing multiple different 2D material databases to expand the data set used in our exper-

iments is also a feasible way for us to continue to improve the proposed method and 

enhance its robustness. 
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