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Abstract. One new robust variant of the formulation of the problem of
searching for the principal components are considered. It’s based on the
application of differentiable estimates of the average value, insensitive to
outliers. In principle, this approach makes it possible to overcome the
influence of outliers in the task of searching for the principal components.
The effectiveness of the proposed approach is clearly demonstrated on
real data.
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1 Introduction

The principal component analysis (PCA) is one of the methods of data decompo-
sition. First classical PCA was originally considered as the problem of the best
approximation of a finite set of points by straight lines and planes [1]. The presen-
tation of training data in the basis of the principal components (PC) contributes
to the reliability of the method of error back propagation in the procedure for
finding the global minimum of the quadratic error function of a neural network
of linear elements [2]. In machine learning, the PCA is often used as a method of
reducing the dimension of input data. However, if part of the data is significantly
distorted, then the results of the classical PCA may be inevitably significantly
distorted.

An overview of classical and robust PCA can be found in [3]. A detailed
overview of modern robust variants of PCA can be found in [4].

In this paper, new robust variant of the standard formulation of the problem
of searching for the PC are proposed. It’s based on the application of differentiable
estimates of the average value, insensitive to outliers. The proposed approach, in
principle, allows to overcome the impact of the outliers. The classical and new
robust variant of the PCA are described below. The effectiveness of the proposed
approach to the construction of robust variants of the principal component method
in comparison with their classical versions is clearly demonstrated empirically
on several real datasets. The theoretical foundations of the effectiveness of the
proposed approach to PCA, shown here empirically, will be presented in future



studies. The proposed robust version of the PCA is compared only with the
classical version of the PCA. In this work, it was important, first of all, to show
experimentally that the proposed robust variant of the classical formulation of
the problem, going back to Pearson [1], makes it possible to effectively overcome
the influence of outliers.

2 The classical approach

The problem of finding the center vector a0 and the orthonormal basis a1, . . . , am
of an m-dimensional hyperplane in Rn is solved, such that the sum of the squares
of the Euclidean distances to it from the points x1, . . . , xN minimal:

N∑
k=1

(
∥xk − a0∥2 −

m∑
j=1

(xk − a0, aj)
2
)
→ min .

The solution of this problem is reduced to a chain of problems in which the
vectors a0, a1, . . . , am are sequentially located. This approach allows you to search
for the principal components one by one.

The vector a0 is found as a solution to the problem:

a0 = arg min
a∈Rn

N∑
k=1

∥xk − a∥2.

Its solution is a sample average: a0 = 1
N

N∑
k=1

xk.

After finding a0, centering is performed: xk → xk − a0, k = 1, . . . , N.
Then the vectors aj (j = 1, . . . ,m) are sequentially searched for as a solution

to the problem

aj = arg min
∥a∥=1

1

N

N∑
k=1

(
∥xk∥2 − (a, xk)

2
)
.

After finding the next PC aj , the transformation is performed:

xk → xk − aj(aj , xk).

The Lagrange multiplier method reduces our problem to the following problem

aj , λj = argmin
a,λ

{ 1

N

N∑
k=1

(
∥xk∥2 − (a, xk)

2
)
+ λ

(
∥a∥2 − 1

)}
. (1)

Since

1

N

N∑
k=1

(a, xk)
2 =

1

N
(Xa)⊤(Xa) =

1

N
a⊤(X⊤X)a = a⊤Sa,



where X — a matrix made up of vectors as rows x1, . . . , xN , S = 1
NX⊤X —

the covariance matrix. Then, in accordance with the necessary condition of the
extremum, aj and λj satisfy the following equations:

Saj = λjaj
∥aj∥ = 1.

That is, the solutions specify orthonormal eigenvectors and eigenvalues of the
matrix S.

To search for aj , one can apply an iterative procedure:

at+1 =
1

λt

(
Sat

)
, λt =

(at)⊤Sat

(at, at)
.

The outlier problem occurs when the distribution of values {∥xk − a∥2: k =
1, . . . , N}, {∥xk∥2 − (a, xk)

2: k = 1, . . . , N} contains outliers. The calculation of
the empirical mean in this case gives a significantly biased value.

3 About robust variant of target functionals

In order to overcome the problem of outliers, it is proposed to use estimates of
the average value, which are insensitive to outliers. And in order to be able to
apply gradient minimization procedures, it is also proposed to use differentiable
estimates of the average.

The proposed robust formulation of the problem involves replacing the mini-
mization of the functional

Q(a) =
1

N

N∑
k=1

Φk(a)

with the minimization of the following functional

QM(a) = M
{
Φ1(a), . . . , ΦN (a)

}
, (2)

where M{z1, . . . , zN} is a differentiable estimation of the average value (M-
estimator [5]), insensitive to outliers [6,7]. This formulation of the problem can
significantly reduce the impact of outliers.

The problem of minimizing QM is reduced to solving the equation

N∑
k=1

∂M

∂zk
∇Φk(a) = 0.

To solve it, one can use the method of iterative reweighting:

at+1 = argmin

N∑
k=1

vtkΦk(a), (3)



where

vtk =
∂M{Φ1(a

t), . . . , ΦN (at)}
∂zk

. (4)

In this paper, the following robust estimate of the mean is used — the censored
arithmetic mean:

CPα{z1, . . . , zN} =
1

N

N∑
k=1

min(zk, z̄α),

where 0 < α < 1. It uses an estimate of the smoothed variant of the α-quantile.
It’s a example of M-mean:

Mρ{z1, . . . , zN} = argmin
u

N∑
k=1

ρ(zk − u),

where ρ(r) is a positive strictly convex function with minimum r(0) = 0. If ρ is
twice differentiable then

∂zρ
∂zk

=
ρ′′(zk − zρ)

ρ′′(z1 − zα) + · · ·+ ρ′′(zN − zρ)
.

For smoothed α-quantile ρ(r) = ρα(r):

ρα(r) =

 (1− α)ρε(r), if r < 0
0, if r = 0
αρε(r), if r > 0,

ρε(r) is such that 1) lim
ε→0

ρε(r) = |r|; 2) lim
ε→0

ρ′ε(r) = sign r; 3) lim
ε→0

ρ′′ε (r) = δ(r)1.

For example, ρε(r) =
√
ε2 + r2 (it was used for calculations in the illustrative

examples below).
At the same time,

∂CMα

∂zk
=


(

1

M
+

m

M

)
∂z̄α
∂zk

, if zk < z̄α

m

M

∂zα
∂zk

, if zk ⩾ z̄α,

The following iterative procedure is used to find z̄α:

ut+1 =

N∑
k=1

φ(zk − ut)zk

N∑
k=1

φ(zk − ut)

,

where φ(r) = ρ′α(r)/r.

1 δ(r) is delta function of Dirac.



For comparison, here is another common use of M-estimators in the construc-
tion of Q. The target functionality is defined as follows:

Q(a) =
1

N

N∑
k=1

ϱ(Φk(a)). (5)

For example, in regression problems

Q(a) =
1

N

N∑
k=1

ϱ(f(xk; a)− yk).

Just such a method is used also in the robust version of PCA in [8].
Note that minimization of (5) is equivalent to minimization of Kolmogorov

mean of Φ1(a), . . . , ΦN (a):

Qϱ(a) = ϱ−1
( 1

N

N∑
k=1

ϱ(Φk(a))
)
.

It is also an example of more general M-mean with ρ(r) = r2:

Mρ,ϱ{z1, . . . , zN} = ϱ−1
(
Mρ{ϱ(z1), . . . , ϱ(zN )}

)
.

To find the optimal a∗ by minimizing (5), the iterative reweighting method
(3) is also used, which differs from our method proposed above in its method of
recalculation of weights:

vtk =
φ(Φk(a

t))

φ(Φ1(at)) + · · ·+ φ(ΦN (at))
. (6)

The weights in both variants of the procedure decrease with the growth of Φk(a
t).

However, in (4), the weights depend on the magnitude of the deviation Φk(a
t)

from the robust estimate of the mean value (2) as opposed to (6). Here is a
brief explanation: both φ(r) and ρ′′(r) are positive and decrease toward to 0 as
r → +∞. If the value of the average value is significantly separated from zero,
then, as a rule,

φ(zk)

φ(z1) + · · ·+ φ(zN )
>

ρ′′(zk − zρ)

ρ′′(z1 − zα) + · · ·+ ρ′′(zN − zρ)

and therefore the weights of the outliers will have a smaller value in case of (4).

4 The robust PCA

The robust version of the statement of the search problem a0 takes the form:

a0 = arg min
a∈Rn

M
{
∥x1 − a∥2, . . . , ∥xN − a∥2

}
.



This problem is reduced to solving the equation

a =

N∑
k=1

∂M{∥x1 − a0∥2, . . . , ∥xN − a0∥2}
∂zk

xk,

that can be solved using the following iterative procedure:

at+1 =

N∑
k=1

vtkxk,

where vtk =
∂M{∥x1 − at∥2, . . . , ∥xN − at∥2}

∂zk
.

After finding a0, centering is also performed: xk → xk − a0, k = 1, . . . , N.
The robust version of the search problem aj takes the following form:

aj = arg min
∥a∥=1

M
{
∥x1∥2 − (a, x1)

2, . . . , ∥xN∥2 − (a, xN )2
}
.

Using the iterative reweighing method, its solution can also be reduced to a chain
of tasks:

at+1
j = arg min

∥a∥=1

N∑
k=1

vtk
(
∥xk∥2 − (a, xk)

2
)

with the following point weights

vtk =
∂M

{
∥x1∥2 − (at, x1)

2, . . . , ∥xN∥2 − (at, xN )2
}

∂zk
.

In all cases vt1 + · · ·+ vtN = 1 by definition
∑N

k=1
∂M{z1,...,zN}

∂zk
= 1.

This problem is a weighted version of the original search problem aj within
the framework of the classical formulation of the problem.

The covariance matrix takes the form:

St = X⊤

vt1 · · · 0
...

. . .
...

0 · · · vtN

X.

The vector at+1
j is the solution of the system:

Sta = λa
∥a∥2 = 1,

that is, it is an orthonormal eigenvector of the matrix St, and λt+1
j is its eigenvalue.

An iterative procedure is used to search for aj :

at+1 =
1

λt

(
Stat

)
, λt =

(at)⊤Stat

(at, at)
.



5 Experiments

For experimental confirmation of the effectiveness of the approach proposed here,
examples of the application of classical and robust PCA for several data sets
are considered. The robust approach proposed here is considered as a natural
robust extension of the classical approach to the construction of PCA. Therefore,
only the proposed robust approach and the classical approach are experimentally
compared here in order to clearly show the ability of the proposed robust extension
to overcome the outliers available in the data.

All calculations were performed using the open source library mlgrad
(https://bitbucket.org/intellimath/mlgrad.git) both for robust and clas-
sical variants of PCA. In the /example folder in the repository there are jupiter
notebooks that contain calculations for the examples presented below. In some
cases datasets was preprocessed using scale or robust cale routines of the mod-
ule preprocessing from scikit-learn library (https://scikit-learn.org).
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Fig. 1: Experiments with 2 plain datasets.

Dataset starsCYG

Consider a data set for constructing a Hertzsprung-Russell diagram of the
CYG OB1 star cluster [5] (table 3), which describes the relationship between
the logarithm of luminosity (log.light) and the logarithm of temperature (log.Te)
of stars. In figure 1a there are 7 points that can be attributed to outliers. The
application of the classical PCA gives the vectors of the PC rotated counterclock-
wise in the direction of outliers. The application of the robust PCA methods



(α = 0.87, ε = 0.001) makes it possible to find the unbiased position of the center
and the PC that do not deviate under the influence of outliers.

Dataset Kelly1984

Consider a dataset Kelly1984 [9], which describes simultaneous pairs of
measurements of serum kanamycin levels in blood samples drawn from 20 babies.
In figure 1b there are some points that can be attributed to outliers. The
application of the classical component method gives the vectors of the PC rotated
counterclockwise in the direction of outliers. The application of the robust PCA
(α = 0.8, ε = 0.001) makes it possible to find the unbiased position of the center
and the PC that do not deviate under the influence of outliers.
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Fig. 2: The positions of the centers and PCs for HIP stars dataset.

Dataset HIP stars

Consider a data set for plotting a chart for stars from a dataset [10]. In figure 2
shows a projection on a pair of Vmag and B-V parameters. The classical PCA
gives offset PC for a given projection. Both proposed robust PCA (α = 0.95,
ε = 0.001) makes it possible to overcome the influence of outliers.

Dataset CigarettesSW

Consider panel data on cigarette consumption in 48 continental US states for
1985 – 1995 years [11]. The PCA is used for tabular data that covers 7 features
(cpi, population, packs, income, tax, price, taxs; state, year are excluded). First
data was preprocessed using scale routine of the module preprocessing from
scikit-learn library. Fig. 3 clearly shows that the data in projections on
PC1×PC2×PC3, which are obtained on the basis of the robust PCA (α = 0.55,
ε = 0.001), have a more contrasting appearance: the data lines up along two



straight lines. Only the first robust approach was applied here because the second
approach does not show efficiency in this dataset.
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Fig. 3: Projections of the data from the CigarettesSW dataset on PC1×PC2×PC3.

It’s easy to see that robust variant allow us to use the projection of data on
the plain PC1×PC2×PC3 so that clustering linear regression method can be
applied to distinguish the linearly shaped clusters.
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Fig. 4: Projections of the data from the HTRU2 dataset on PC1×PC2×PC3.

Dataset HTRU2
HTRU2 is a data set which describes a sample of pulsar candidates collected

during the High Time Resolution Universe Survey (South). It contains 17898
rows, 8 columns and divided into 2 classes. The PCA used for data that covers 8



features. First data was preprocessed using robust scale routine of the module
preprocessing from scikit-learn library. It is easy to see in the figure 4 that
the projection of data on PC1×PC2×PC3 for the case of the classical PCA turns
out to be rotated relative to PCs, while in the case of the robust PCA variant
(α = 0.9, ε = 0.001), the data is almost located along PCs. For example, the
projection on the PC2 allows you to distinguish pulsars from others.

6 Conclusion

Robust variants of the formulation of the PCA problem, based on minimizing
differentiable estimates of the mean, which can be significantly more resistant
to outliers, allows us to find unbiased vectors of the PC. The α indicator in
the smoothed quantile estimate roughly corresponds to the proportion of data
that are not outliers (a more accurate value is found experimentally in its
neighborhood). The first robust method makes it possible to identify outliers
by analyzing the empirical distribution of distances to straight lines passing
through the center a0 along the vectors of the PC. The second robust method
also makes it possible to identify outliers by analyzing the empirical distribution of
Mahalanobis distances from the center to all points. It is also interesting because
after finding a robust variant of the covariance matrix S, standard algorithms of
PCA can be applied. Expreiments also was demonstrated that the first and the
second robust approaches may have different levels of efficiency in same dataset
with ouliers.
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