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Abstract. This work presents a novel method for regime estimation and 

degradation extrapolation for steam turbines. The proposed approach combines 

statistical techniques with machine learning algorithms to accurately predict the 

remaining useful life of the turbine components. The method was tested on 

experimental data from a steam turbine operating under varying regimes and 

showed promising results in terms of accuracy and efficiency. The findings of 

this study have implications for the maintenance and management of steam 

turbines, as it provides insights into predicting the lifetime of components, 

allowing for more effective maintenance practices and potentially extending the 

lifespan of the equipment. 
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1.1 Introduction 

Steam turbines play a vital role in the global energy landscape, serving as the backbone 

of power generation plants worldwide. Ensuring the optimum performance and 

reliability of these turbines is essential to meet the ever-growing demand for energy and 

mitigate potential risks associated with equipment failure. To address these challenges, 

accurate assessment of steam turbine operating regimes and their degradation rates is 

necessary for effective maintenance and management practices. 

 

Recent advancements in computational methods and data analytics have opened new 

possibilities to improve the state-of-the-art in steam turbine prognostics. Machine 

learning and statistical techniques provide promising tools for developing robust and 

efficient models capable of predicting component degradation under varying operating 

conditions. However, the complexity of steam turbines and the inherent variability in 

component wear present significant challenges that require tailored approaches to 

address effectively. The aim of this approach is to minimize maintenance costs and 

extend the  turbine’s availability by monitoring and health prognostics of a turbine. The 

health prognosis often include not only online anomaly detection but also remaining 

useful life (RUL) prediction. 

 



In a past decade an area of machine and deep learning received a heavy boost which 

also effected an area of anomaly detection [1]. However relatively small research works 

appear in the area of steam turbines predictive maintenance and not succeeding in 

keeping up with modern capabilities. At 2010 Salahshoor et al. [2] used a support vector 

machine (SVM) classifier with an adaptive neuro-fuzzy inference  system (ANFIS) to 

detect several steam turbine fault types, which included actuator fault, thermocouple 

sensor fault, fouling. For RUL prediction Khelif computed health indicators of the 

steam turbine time series via a linear regression with training on the 0 and 1 labels 

assigned correspondingly to normal and abnormal exploitation periods [3]. The authors 

use this model to transform historical data into a one-dimensional vector, divide it into 

windows and then apply the same transformation to the online data and calculate 

distances between online vector and historical vectors via dynamic time warping 

(DTW) technique to estimate RUL. In 2017 Khelif et al. [4] proposed to use Support 

vector regression to directly predict RUL from sensor time series data. Dhini et al. [5] 

utilized a fully connected neural network (FCNN) classifier basing on the features after 

principal component analysis (PCA) transformation. Authors also worked in a 

supervised learning paradigm aiming at prediction of 4 previously occurred (in 

historical data) fault types: misalignment, rotor browing, blade erosion and cracked 

case. The resent work was made by Que et al. [6]. The authors use a binary classifier 

based on Extreme gradient boosting (Xgboost) trained on the time series of the normal 

and fault work periods labeled as 0 and 1 correspondingly. For the RUL prediction 

authors used DTW similarly. 

 

All the mentioned approaches require episodes of fault behavior in historical data. 

However various unsupervised techniques exist and might be used in fault detection of 

steam turbines while the data on usage of these techniques for steam turbines is lacking. 

Here we describe our framework for unsupervised anomaly detection for a steam 

turbine using recent approaches. We also propose a method of unsupervised RUL 

prediction for each sensor separately basing on their exploitation thresholds. This task 

could not be solved by classical methods like time series forecasting with SARIMA [7], 

Facebook Prophet [8] and similar algorithms. The cause is the transition of the overall 

system between steady states resulting from the change in system parameters made by 

operator of the turbine. For each of these states the time series of a particular sensor is 

fluctuating in a fixed range and the mentioned methods thus could not work even 

providing the information on the system parameters changes which also could be 

lacking. 

 

2 Dataset description 

The dataset comprised 180-200 time series, which represented various sensor signals 

such as pressure, temperature, and flow. These signals were measured in distinct steam 

turbine modules, including steam lines, high-pressure regeneration, low-pressure 

regeneration, condensation system, drainage system, oil supply, cooling, and seals. The 



sampling rate was set at 1 second, and the total data collection period spanned four 

months. 

 

During the first month, several instances of system reboot were observed, wherein the 

rotor rotation speed decreased from 3000 rpm to significantly lower values or even 

reached zero. These occurrences indicated the process of system adjustment. Since 

these periods might not represent typical operational trends, the decision was made to 

exclude the first month of data from the analysis. 

 

Additionally, certain sensors were found to exhibit inaccurate physical measurements, 

such as negative steam temperature. Some vibration sensors were identified as 

defective, primarily displaying values near zero. Both categories of sensors were 

subsequently omitted from further analysis. 

 

2.1 Regime extraction 

A steam turbine is a complex system that can be configured in various ways to maintain 

specific power levels and direct a portion of the steam to other sources for industrial 

and/or heating purposes. The system comprises several modules, which aim to enhance 

its efficiency and are automatically adjusted to accommodate external factors such as 

temperature. These adjustments and external conditions significantly impact the 

absolute and relative values displayed by the sensors, as well as the correlations 

between them, resulting in the occurrence of multiple steady states. To accurately detect 

anomalies, it is essential to analyze the data within these steady states or their groups, 

as the parameter distributions within them exhibit some degree of order. However, no 

logs of system setting changes were provided, which necessitated the development of 

an automatic regime extraction method based on sensor data. 

 

Various approaches to address this issue were explored, and experts in the field 

evaluated the results. Additionally, the following constraints were considered: 

1) The duration of a steady state must not be less than 20 minutes. 

2) The steam turbine must operate in a steady state for more than 60% of the total 

time. The remaining time is attributed to the transitions between steady states. 

 

Experts identified 9 sensors that respond first to changes in settings and provided 

threshold values for the variance of these sensors that could be observed in steady-state 

conditions. We conducted a comparative analysis of the chosen sensor time series at 

various time scales, ranging from 30 minutes to 1 week, for each sensor independently. 

This comparison resulted in specific time scales for each sensor, which were selected 

for further analysis and included 24.0, 18.0, 8.0, 2.0, 1.0, and 0.5 hours. 

 

The overall procedure for the proposed regime extraction is outlined as follows: 

1) Select the largest time period from the set (initially, 24 hours). 



2) Apply a rolling window analysis to the time series for the chosen nine sensors, 

using a window size corresponding to the period in step 1 and a step size of 20 minutes. 

3) For each window, verify whether all time series parameters are below the 

threshold and save the window if the condition is satisfied. 

4) For each saved window, apply the Kwiatkowski-Phillips-Schmidt-Shin (KPSS) 

[9] test to check the stationarity of each sensor time series and compute the product of 

the results. 

5) Sort the windows in ascending order based on the multiplied KPSS values and 

iteratively add each window to a final set: 

   a. If a new window does not overlap with any of the previous ones, assign it a new 

steady-state label. 

   b. If a new window overlaps with any of the previous ones, check if the parameters 

are below the threshold, as in step 3: 

      i. If all checks pass, combine the windows. 

      ii. If not, assign the union of the two windows to the one with the highest KPSS 

value, and label the remaining part of the overlapping new window separately. 

6) Repeat steps 1-5 for smaller scales. 

 

However, upon examining the results of the proposed approach, experts noted some 

steady states that fell within the given thresholds but contained two or three smaller 

states internally, which they visually identified by analyzing the active power time 

series. Reducing the threshold could further segregate these states but would also result 

in a decrease in the overall percentage of steady states relative to transition states, which 

is undesirable. Consequently, we decided to perform post-processing using Bayesian 

Gaussian Mixture [10] on the active power time series and pressure measurements in 

the key regulation leads of the system. 

 

1) For each previously extracted steady state, we attempted to apply the Bayesian 

Gaussian Mixture with a convergence threshold of 1e-4 and a number of components 

equal to 2. 

2) If the algorithm converged, we calculated the overall duration of each component 

during the steady state, and only retained those with durations exceeding 1 hour (based 

on the assumption that a component might appear multiple times during a steady state, 

with each part lasting at least 20 minutes). 

3) We compared the difference between the mean values of the components to the 

mean of the components; only those steady states with a ratio not less than 2.5% were 

further divided into components. The value of this threshold was visually adjusted 

through the analysis of various steady state examples containing two components. 

4) For the selected steady states, the segregation into components, represented as a 

sequence of 0 and 1 (numeric representation of the two components), was filtered using 

a moving average with a window size of 20 minutes and rounded to remain binary. 

5) For each of the resulting components, if it comprised less than 20 minutes, we 

assigned a transition period label to it; otherwise, we assigned a new steady state label. 

 

 



 

2.2 Variational Autoencoder 

The application of autoencoders and variational autoencoders is widely used for 

anomaly detection [11 - 15]. In order to obtain information about the state of the turbine 

according to the readings of its sensors, the procedure of training the variational 

autoencoder was carried out [16].  

 

The input layer was configured to process a tensor that represents parameter 

evolution during a single time frame, with a duration of 180 seconds. The encoder 

consisted of four 2D convolution layers, with 32 filters in the first layer and 64 filters 

in the subsequent three layers. The kernel size was set to 3, and the activation function 

employed was the rectified linear unit (ReLU) function. After the convolution layers, a 

fully connected layer with 32 neurons and a ReLU activation function was 

implemented. The latent dimension layer had a size of 2, enabling the visualization of 

the results.  

 

The decoder was designed with an input layer consisting of 2 neurons, followed by 

a fully connected layer with a ReLU activation function. The subsequent decoder layer 

was a fully connected layer with a size equal to M * N/2, where M and N represent the 

input tensor's shape. The next decoder layer was a transposed convolution layer (also 

known as deconvolution) with 16 filters and a kernel size of 3. Transposed convolutions 

were employed to implement a transformation in the reverse direction of a conventional 

convolution. Finally, the decoder contained a convolution layer to obtain a tensor size 

equivalent to the input tensor size. 

 

The loss function was computed using a reconstruction term and a regularization 

term in the form of Kullback-Leibler divergence. The reconstruction term of the loss 

function was based on the binary cross-entropy loss: 

 𝐻1= −1/ 𝑁  𝑦𝑖 log(𝑝(𝑦𝑖)) + (1 - 𝑦𝑖) log(1 – 𝑝(𝑦𝑖))  

The regularization term in form of Kullback-Leibler divergence  was rewritten in the 

following form [17]: 

 H2 = − ½ (1 + σ + μ2 − eσ)  

Where μ and σ are the individual means and standard deviations. 

 

The total loss function was a mean of H1 and H2 loss: 

 Htotal = (H1 + H2) / 2 

Additionally, the reparameterization trick [18] was utilized to enable backpropagation 

through the network. 

 



The neural networks were trained for three epochs, during which the loss decayed on 

the validation dataset. During the model training process, a mean squared error (MSE) 

of 0.012 was achieved. After model training, the encoder was used to transform the 

multidimensional time series into a 2-dimensional latent space. 

 

Subsequently, each identified steady state was transformed into a point cloud in the 

latent space. Within each steady state, the time series was divided into 180-second 

frames. The variational autoencoder's encoder was applied to each frame, resulting in 

two coordinates in the latent space for each frame. The collection of points in the latent 

space was condensed into a single central point by calculating the average value for 

each point cloud coordinate. 

 

2.3 Degradation detection 

A prediction model for the turbine sensor readings can be constructed within the context 

of a single steady state, which lasts for a duration of several hours. The transition 

between steady states is controlled by operators and cannot be accurately predicted. 

Parameter degradation is expected over time scales exceeding 14 days, which is 

considerably longer than the time scale of each regime. 

 

Considering the data characteristics described above, the following assumptions were 

made: 

• Steady states with similar parameter distributions occur over an extended time scale 

of more than 14 days. 

• Long-term parameter degradation can be observed within the context of steady 

states that exhibit closely related parameter distributions. 

• A regression model can be developed to predict the sensor readings over an 

extensive time scale. 

• A distinct upward/downward trend in the extrapolation of the regression model for 

the turbine parameter within the framework of steady states can help identify a 

degrading parameter among other parameters. 

 

 

 

Figure 1: the schema of degradation detection workflow 

 



The implementation of the degrading parameter search, based on the above 

assumptions, was conducted as follows (fig. 1): 

1) All selected steady states were transformed into the variational autoencoder's 

latent space and characterized by a single set of latent space coordinates. 

2) The following sequence was executed iteratively: 

   a. One steady state was randomly selected. 

   b. A set of steady states with close coordinates in the latent space was identified. 

   c. The chosen set of steady states defined the time frame on which the regression 

model was subsequently trained. 

   d. The extrapolation trend of the trained regression model was recorded for further 

analysis. 

3) As a result, the trend distribution was obtained for each parameter. 

4) If the parameter trend distribution was normal, symmetric, and the mean value 

was close to 0, the degradation hypothesis for the parameter was rejected. 

5) If the parameter trend distribution was asymmetric and the mean value was shifted 

relative to 0, the degradation hypothesis for the parameter was confirmed. 

 

To detect degradation in its early stages, the algorithm used a constraint when initially 

selecting a random steady state (2.a): only states observed during the last two months 

were employed. Simultaneously, the sample of the stable state family also included 

similar regimes with more distant historical distributions. 

3 Expert Validation and Analysis 

To further validate the proposed approach for regime estimation and degradation 

extrapolation in steam turbines, an expert test was conducted involving industry 

professionals with extensive experience and knowledge in the field. The objective of 

this test was to assess the reliability and practicality of the suggested methodology in 

predicting degradation parameters that could lead to turbine failure. 

 

 

Figure 2: Comparison of normalized distribution densities for long-period trends. The 

X-axis represents the trend of randomly subsampled time series exhibiting the same 

steady-state conditions, while the Y-axis denotes the normalized distribution density. 

The left one corresponding to a steam turbine sensor exhibiting degradation and the 

right one representing a sensor without degradation 

 



3.1 Expert Test Setup 

A panel of experts, consisting of engineers and technicians specializing in steam turbine 

maintenance and operation, participated in this test. These experts were provided with 

the predicted degradation parameters obtained from the proposed model, along with 

pertinent contextual information about the steam turbine's operating conditions. The 

participants were asked to evaluate the degradation parameters and determine their 

potential impact on turbine performance and longevity. 

 

 

3.2 Degradation Parameters 

Two primary degradation parameters were identified by the proposed approach: 

Degradation Parameter 1 (DP1) and Degradation Parameter 2 (DP2). DP1 and DP2 

were associated with vibration sensors. The analysis indicated that DP1 tends to reduce 

vibrations and has a minor effect on turbine performance, while DP2 tends to increase 

vibration and can lead to critical failures if not addressed in a timely manner. 

 

3.3 Expert Evaluation Results 

The majority of the experts agreed on the relevance and significance of the identified 

degradation parameters. Furthermore, they agreed that DP2 could potentially lead to 

turbine failure within a timeframe of 7 to 10 years if left unaddressed. 

 

In conclusion, the expert validation and analysis demonstrated the effectiveness of the 

regime estimation and degradation extrapolation method in predicting degradation 

parameters that can lead to steam turbine failure. The results of the expert test provide 

strong support for the proposed approach, highlighting its potential application in 

practice for enhanced steam turbine maintenance and management. 

 

4 Conclusion 

 

In conclusion, this scientific paper has presented an innovative approach to regime 

estimation and degradation extrapolation for steam turbines by integrating statistical 

methods with machine learning algorithms. The proposed technique has demonstrated 

promising results in predicting the remaining useful life of turbine components, 

paving the way for improved maintenance and management practices.  

 

While the current study has shown significant advancements in steam turbine 

prognostics, future research could explore the extension of this methodology to other 

power generation equipment and the incorporation of additional sensor data for more 



accurate predictions. Additionally, advances in machine learning algorithms could 

further enhance the performance of the proposed technique in terms of speed and 

accuracy, elevating its utility across the energy sector. 

 

Overall, this research serves as a stepping stone in addressing the challenges of 

maintenance and management in the steam turbine domain, ultimately contributing to 

a more sustainable and efficient global energy landscape. 
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