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Abstract. The article compares ARMA models, boosting, neural net-
work models, HAR RV models and proposes a new method for predicting
one day ahead realized volatility of financial series. HAR RV models are
taken as compared classical volatility prediction models. In addition, the
phenomenon of transfer learning for boosting and neural network models
is investigated. Bitcoin and E-mini S&P 500 are chosen as examples. The
realized volatility is calculated based on intraday (intraday - 24 hours)
data. The calculation is based on the closing values of the internal five-
minute intervals. Comparisons are made both within and between the
two intervals. The intervals considered are 01.01.2018 - 01.01.2022 and
01.01.2018 - 02.04.2023. Since there were structural changes in the mar-
kets during these intervals, the models are estimated in sliding windows
of 399 days length. For each time series, we compare three-parameter
enumeration boostings, about 10 different neural network architectures,
ARMA models, the newly proposed CTCM method, and various train-
ing transfer and training sample expansion options. It is shown that
ARMA and HAR RV models are generally inferior to other listed meth-
ods and models. The CTCM model and neural networks of CNN ar-
chitecture are the most suitable for financial time series forecasting and
show the best results. Although transfer learning shows no improvement
in terms of forecast precision and yields little decline, it requires more
extensive and detailed study. The smallest MAPEs for Bitcoin and E-
mini S&P 500 realized volatility forecasts are achieved by the newly
proposed CTCM model and are 21.075%, 25.311% on the first interval
and 21.996%, 26.549% on the second interval, respectively.

Keywords: Time Series · Forecasting · Bitcoin · E-mini S&P 500 · Cryp-
tocurrency · Realized Volatility · Corrected Triple Correction Method ·
Transfer Learning · Convolution Neural Network.

1 Introduction

This article is the first step of a large study to identify the best prediction
models and/or to create a unified methodology for selecting the most appropriate
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models without a long trying process. The main contribution of the work in the
investigated field is the new proposed method (TCM and CTCM), which has
shown itself to be comparable in forecast precision with neural network models
and boosting, the study of the transfer learning effect for financial time series in
different configurations on two different assets as well as the systematization of
other methods and approaches, which are briefly described in Section 3.5.

The paper examines the logarithms of the realized volatilities of Bitcoin and
the S&P 500 futures. Of course, a study of just two assets does not allow us to
draw fully representative conclusions about the best or worst models, which can
be unambiguously extended to many other time series. However, the purpose of
this article is not to choose the best model, but to consider the applicability of
various types of models on the example of two major representatives of the cryp-
tocurrency and classic stock exchanges. The conclusions drawn in this study on
these two assets are an important starting point for the following work. Namely,
that it is impossible to offer a ”panacea“ in methods. Sometimes even the most
classical models like AR(1) can outperform neural network models in prediction
precision.

In [13] it was confirmed the presence of volatility spillover between the two
mentioned assets, which are among the main representatives of cryptocurrencies
and classic stock exchanges. Neural network models, among others, allow us
to exploit this connectivity in training. For example, by using two time series
simultaneously training or by applying variations of transfer learning.

The article compares a large number of models – classical (ARIMA, HAR,
regression) and machine learning (boosting), different neural network architec-
tures, approaches to learning – transfer learning, feature generation for sample
expansion, and also proposes new models TCM and CTCM, which is described
in section 3.9. The best models are described in more detail in the methodol-
ogy and their uncertainties are given in the results, other methods and models
are briefly described in Section 3.5. All presented methods and models are cho-
sen for consideration as they are classical in the field of econometrics, machine
learning or neural networks. Transfer learning are considered because they are
poorly understood for economic time-series forecasting and, as we know from
other machine learning problems, they can sometimes improve the results.

The MAPE (Mean absolute percentage error) metric is used to compare the
quality of predictive power of models. It is explicitly interpretable and allows us
to estimate specific errors in percentages. This metric also makes it possible to
estimate the possible practical applicability of models and to compare prediction
precision on different data series and for different periods.

2 Related Work

As shown by researchers ( [5]; [20]; [17]) high volatility of futures prices creates
big obstacles for volatility forecasting, in the case of using oil and electricity
futures volatilities.
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[9] proposed a hybrid ANN-GARCH model to predict Euro/Dollar and
Yen/Dollar volatility. The authors considered a small number of layers and neu-
rons for the ANN part and concludes about the best type of architecture. The
hybrid approach was shown to be efficient and reduce errors.

Two years later, [10] proposed the application of the developed ANN-GARCH
model to Bitcoin volatility. Unfortunately, the authors didn’t provide the results
obtained for the hybrid MAPE model, but the relative errors for different types
of GARCH models are large, which is also consistent with our results.

[6] investigated the applicability of LSTM models in forecasting using the
S&P 500 returns from 1992 to 2015 as an example. The authors showed the
effectiveness of LSTM relative to RNN and random forest (in some cases).

[8] used hybrid models to predict stock price volatility. They combined a
machine learning model, namely the Long-Term Short-Term Memory (LSTM)
model with some of the GARCH models. The proposed methodology improved
the prediction performance compared to the GARCH models.

[15] compared RNN (recurrent neural network) models, GARCH and EWMA
on Bitcoin data. The authors show that RNNs are better in average prediction
efficiency, but they don’t capture Bitcoin outliers well enough.

[18] used the Dow Jones Industrial Average (DJIA) and Nasdaq Compos-
ite (IXIC) to investigate a large number of hybrid models based on ARMAX,
GARCH and LSTM models, and the applicability of wavelet transformations.
The results show an overall improvement in stock index prediction using the
AWT-LSTM-ARMAX-FIEGARCH model with the Student’s t distribution. A
robust test proves that this model has better prediction precision at different
time horizons (1-, 10-, 15-, 20-, 30-, and 60-day ahead) for both stock indices.
Also, AWT-LSTM improves the ability of the HAR RV (3) X-RV model in pre-
dicting realized stock volatility for the specified time horizons.

[16] used data from the Chinese oil futures market and the Australian elec-
tricity futures market to find that the precision of XGBoost volatility forecasting
is significantly superior to GARCH-jump and HAR-jump models in both mar-
kets.

[11] used LSTM and CNN-LSTM models to predict gold price volatility. The
study showed improved prediction results when using a combination of CNN and
LSTM layers.

[12] applied a model based on LSTM layers and ensembles to account for the
features of the cryptocurrencies under study, Bitcoin, Etherium and Ripple. The
proposed model can leverage mixed cryptocurrency data, reduce overshoot and
provide lower computing cost compared to a traditional deep neural network in
terms of fewer weights (and lower computation time).

[19] combined different methods and proposed a hybrid DWT-ARIMA-
GSXGB model to achieve improved prediction precision, approximation and
generalization abilities. First, a discrete wavelet transform is applied to split the
data set into approximation and error parts. Then the ARIMA (0, 1, 1), ARIMA
(1, 1, 0), ARIMA (2, 1, 1) and ARIMA (3, 1, 0) models process approximate par-
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tial data, and the advanced xgboost (GSXGB) model process erroneous partial
data. Finally, the prediction results are combined using wavelet reconstruction.

[2] use a new set of traits by creating a six-function set (High, Low, Volume,
Open, HiLo, OpSe) rather than the traditional four-function set (High, Low,
Volume, Open). The study is conducted on 4 assets: Apple, ExxonMobil, Tesla,
Snapchat. MLP, GRU, LSTM, Bi-LSTM, CNN and CNN-LSTM are compared to
predict the adjusted closing price of the stock. The authors found that the LSTM
model gave the most precise results, although all models showed comparative
results in which no one model performed consistently better. It is also important
to note that the addition of the new series had an overall positive effect on
the performance of the forecasting models. This work shows the applicability of
expanding the number of features to improve the predictive power of the models,
but this approach does not always give the best results.

[14] investigated the effect of transfer learning on the predictive ability of
models and their convergence rate during training on different data and 4 archi-
tectures. The transfer was performed both within a single application domain
(seismology) and between different application domains (seismology, speech,
medicine, and finance). The conclusion from the work is that transfer learn-
ing tends to either enhance or have no negative effect on the predictive efficiency
of the model.

Thus, a new TCM/CTCM method is given in this paper, which is different
from all the given methods, as well as showing better precision than the other
considered methods.

3 Data

3.1 Data

The study considers two periods: 01.01.2018 - 01.01.2022 and 01.01.2018 - 02.04.2023.
All data is taken from finam.ru1. Values at the close of internal five-minute in-
tervals are used. For the forecast we consider an interval of 399 days in a sliding
window of length 5. In other words, every fifth value is predicted. This approach
makes it possible to reduce the running time of the program and to obtain error
estimates.

Exchange instruments are used for analysis:

1. Bitcoin (btc) is the cryptocurrency with the largest capitalization, we can
say that it is the “main” cryptocurrency at the moment. It is traded 24/7.

2. The E-mini S&P500 Index (snp) is a futures contract traded on the Chicago
Mercantile Exchange (CME) representing one fifth of the value of a standard
S&P 500 index futures contract. The S&P500 Index includes: 400 industrial
corporations, 20 transportation corporations, 40 financial corporations and
40 utilities. Almost all the companies are traded on the NYSE, but there are
also those traded on the AMEX and Nasdaq. The base asset for this futures

1 https://www.finam.ru/profile/cryptocurrencies/btc-usd/export
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is the value of the S&P 500 stock index. This futures is valuable to research
as it is related to one of the largest S&P 500 indices and trades almost all
day. It is traded from 6:00 Sunday to 5:00 Friday (Chicago Stock Exchange
time) with a daily break from 5:00 to 6:00.

3.2 Realized volatility

The five-minute realized volatility is used as the realized volatility. The choice
of such time intervals is due to the study of [3]. They showed that the values of
the realized volatility calculated by five-minute intervals are the most optimal
in terms of precision and microstructure errors. Previously, the same form of
volatility calculation was used in the articles of [13] and [1].

The realized volatility on day t is presented as:

RVt,j =

√√√√ N∑
j=1

r2t,j , (1)

where rt,j = log(pt,j) − log(pt,j−1) – the yield, pt,j – the price of the asset on
day t at the end of the intraday interval j of length T (seconds), j = 1 . . . N
with the total number of intervals for one day equal to N . The first five minutes
are 00:00 – 00:05. The last five minutes are 23:55 – 00:00. Calculation is done
by closing prices of five-minute periods.

The RV described above is the square root of the realized variance. In HAR RV
models, realized variance is predicted and then the square roots are taken from
them to obtain realized volatilities.

In the article, to obtain comparable results in the presence of gaps in the
data, the realized volatility is calculated as follows:

– If there are less than 5 hours of data in the day, the day is deleted;
– If observations are missing at the beginning and/or at the end of the day, the

realized volatility is calculated using the available K five-minute intervals,
and then scaled to the daily data. Since the day contains 288 five-minute
intervals, the numerator is 288:

RVt =

√√√√288

K

K∑
j=1

r2t,j . (1.1)

– In the case of missing data within a day, for example, between moments j1
and j2, the appropriate sum is replaced by the square of the yield for the
missed period.

Thus, the comparability of the daily realized volatility values of the futures on
different days with the daily realized volatility values of Bitcoin is obtained.

In [13] it was obtained that the realized volatilities are of lognormal nature
and it is the HAR-ln(RV) models that show the best prediction precision. In
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this article, it is the logarithms of the realized volatilities that are fed into the
input of the models, and then the exponents from the forecasts are taken. Thus,
we can take into account the lognormal character of the realized volatilities and
obtain the highest-quality forecasts of the studied values.

4 Methodology

4.1 Workflow

A large number of models and approaches were investigated and compared in the
article, the tables in the “Results” section present the best of them by MAPE
indices (see (2)). Also in section 3.5 we present models which did not show good
prediction precision, but which were also built and investigated. The article pro-
vides, according to the authors, an exhaustive comparison (in terms of prediction
precision) of neural network models and boosting (with/without Transfer Learn-
ing) with similar predictions of classical HAR RV models, as well as with the
CTCM (item 3.9) and ARIMA(p, 0, q) models, where p ∈ [1, 10], q ∈ [0, 9]. All
models are trained in a sliding window of 399 days with a sliding step of 5,
followed by a 1-step-ahead forecast. Thus, all models make predictions for the
same days, using the same data.

For repeatability, numpy.random.seed(7) is used because the neural networks
give slightly different results with each training. Each model in each window
is trained 10 times (each time a prediction is made), the prediction for each
step is averaged, and then MAPE is calculated, which allows to achieve relative
repeatability of the results.

Since the realized volatility is predicted, and [1] confirmed the logarithmic
nature of the realized volatility, the logarithms of the realized volatility are input
into the models, and exponents are taken from the resulting predictions.

After the MAPEs for the neural networks are calculated, the errors are com-
pared with the MAPEs of the selected best HAR-ln(RV) models, conclusions
are made about the best models and the efficiency/non-efficiency of the classical
models.

4.2 Boosting

This article describes forecasting with the help of the “xgboost” [25] package
and the function “XGBRegressor” in Python. A search is carried out according
to 3 parameters, n estimators = 100, 5 elements in each sample:

1. eta = [0, 1] in steps of 0.1;
2. gamma = [0, 1] in steps of 0.1;
3. max depth = [1, 11] in steps of 1.

In the following tables, the results of the boosts are named “xgboost (eta)
(gamma) (max depth)”, where instead of parameters are their values in the
model.
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Catboost [22] and adaboost [21] are also considered. Their results are almost
identical (and sometimes inferior) to those of xgboost and are not given in the
tables below.

4.3 Architectures of neural networks

As a result of the search, it was found that the best performance of the models
is achieved with the “tanh” activation function – the tables show the results of
the models with this activation function.

For all presented and mentioned below neural network models, the loss func-
tion of training is the classical MAE. Empirically on the given data sets, it is
obtained that with loss=“mae” the best error rates are obtained. The batch size
parameter, as well as the batch lengths (lags), are chosen to be 5. For training in
each sliding window 200 epochs are taken with control of training by unchanging
loss on 10 consecutive epochs, optimizer= “adam”.

The article focuses on neural networks with one gate and one or two feature-
rows (features) on the gate (in the endnotes “TS 1” and “TS 2”, respectively).
Many architectures such as LSTM [7], BiLSTM, CNN-LSTM, MLP, RNN, CNN
and Encoder-Decoder are investigated. The most efficient of them, in terms of
MAPE and running time, were the CNNs. At the same time, the number of
layers has little effect on the error, which can be attributed to the features of the
data and training, not only to the predictive abilities of the models themselves.
The architectures of the two models that showed the best results in MAPE for
both data series are described below.

1. First CNN with 1 layer (M 1 CNN):
filters=4features, kernel size=lags;
dense layer output: features neurons.

2. Second CNN with 1 layer (M 2 CNN):
filters=features, kernel size=lags;
dense layer output: features neurons.

4.4 Transfer Learning

This section deals with Transfer Learning (TL) only for the above two archi-
tectures: M 1 CNN and M 2 CNN, as well as for boosting. The following TL
variants are investigated, with appropriate labels at the end of the model names:

1. Training on RV Bitcoin and RV E-mini S&P500 forecasting – “tbs”;
2. RV E-mini S&P500 Training and RV Bitcoin Forecasting – “tsb”;
3. Training on RV Bitcoin and RV E-mini S&P500 followed by forecasting both

assets – “tbbss”.

4.5 Other methods

A large number of models, architectures, and approaches have been studied in the
course of writing this article. Not all of them have shown effectiveness and good
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results. The following models and approaches were investigated in the article,
but not included among the best, so their results are not presented in tables and
graphs:

1. Classic regression, similar to the AR(1) process. Errors are 4-5% higher than
in CNN. Running time is many times less than CNN.

2. RNN. MAPE is 4-5% higher than CNN. The running time is 1.5 times more
than that of CNN.

3. LSTM. MAPE is 9-10% higher than CNN. The running time is 2-3 times
longer run time than the CNN.

4. BiLSTM. MAPE is 9-10% higher than CNN. The running time is 2 times
longer run time than the CNN.

5. LSTM – CNN. MAPE is 4-5% higher than CNN. The running time is 2-3
times longer run time than the CNN.

6. BiLSTM – CNN. MAPE is 4-5% higher than CNN. The running time is 2
times longer run time than the CNN.

7. Encoder – decoder based LSTM. The model is architecturally similar to the
classical CNN, it is % less precision than CNN. The running time is 1.5-2
times longer run time than the CNN.

8. MLP (2 to 15 layers with 10/16/25/32/64 neurons) – MAPE is 5-6% higher
than CNN. The running time is 1.5 times longer run time than the CNN.

9. Library TabNet [23]. Prediction results made with this library with enu-
meration of different internal parameters are 5-6% inferior to selected CNN
models. Running time is comparable to CNN.

10. The methods listed above and below with artificial expansion of the training
sample using the tsfresh library [24] are inferior to the corresponding models
without artificial expansion of the training sample set by 4-5%. More than
4,000 features were extracted in each sliding window step, and then only
22 relevant ones were selected. The features extracted in each sliding win-
dow were fed into the models as well as into “tbbss”/“tssbb” type transfer
learning methods. In the case of the SARIMAX model, where the extracted
relevant traits are taken as exogenous variables, the MAPE was increased
by 4-5%. MAPE increased by 4-5% relative to CNN.

11. Multiple regression with regressors, which are features extracted using ts-
fresh. This approach is inferior to the classical regression AR(1) by 2-3%
in MAPE, and also takes 10-14 times longer, because it takes about 10-14
seconds to extract the features in one sliding window (for a window length
of 399 values).

12. Catboost, adaboost, based on decision trees. These types of boosting are
usually inferior to xgboost by 1-2%, so the following tables show the models
from the xgboost package.

In all cases of neural network architectures, 1-3 layer models with 5, 20, 32,
64 and 128 neurons per layer (in different combinations) and activators “linear”,
“tanh”, “relu” for each layer were considered. The best results were obtained
with the “tanh” activator function on all layers.
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4.6 Benchmark HAR

The article presents the results of HAR RV (5, 21) [4] forecasts in the logarithmic
specification as a benchmark. Earlier in [1] it is shown that in terms of prediction
precision there is not much difference between the simplest HAR RV (5, 21)
and the model selected by enumerating different HAR RV model specifications.
The paper also shows that the realized volatilities are best predicted exactly by
HAR RV models with logarithmic specification. It is important to point out that
in these models the variance is predicted and then the square root is extracted
from it, since the task is exactly to predict the realized volatility.

Specification HAR RV (5,21) [4]:

RVt+1 = β0 + β1RVt + β2
1

5

4∑
j=0

RVt−j + β3
1

21

20∑
j=0

RVt−j . (2)

4.7 The Triple Correction Method

This method was developed for this article and is based on the following ideas:

– The idea of considering a correction for past step deviation (with some
weight):

Ej = yj − ŷj = εj ;

– Attempt to consider and reflect the internal dependencies of the original data
series and take into account the process changes as a difference of consecutive
values (taken with some weight), to correct the algorithm:

Ij = yj − yj−1;

– Attempt to reflect the deviation of the changes in the raw data series from
the changes in the series obtained during the algorithm (taken with some
weight) to correct the algorithm:

EIj = ((yj − yj−1)− (ŷj − ŷj−1)).

Let us combine all of them:

ŷt+1 = α0yt + α1(yt − yt−1) + α2(yt − ŷt) + α3((yt − yt−1)− (ŷt − ŷt−1)) =

= α0yt + α1It + α2Et + α3EIt =

= α0x0,t + α1x1,t + α2x2,t + α3x3,t,

where ŷt+1 – the predicted value at time t+1, yj – the real “historical” data, ŷj
is the predicted data (j = 0, . . . , t), ŷ0,1 = y0,1, αk – the adaptation parameters,
k = 0, 1, 2, 3.

The vector of optimal αi is found by the following algorithm:

t−1∑
j=0

(yj+1 − ŷj+1)
2 =

t−1∑
j=0

(yj+1 − α0x0,j + α1x1,j + α2x2,j + α3x3,j)
2 → min;
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t−1∑
j=0

xi,j(yj+1 − α0x0,j + α1x1,j + α2x2,j + α3x3,j) = 0, where i = 0, . . . , 3;

Matrix form:

Y T
t−1Yt−1α = Y T

t−1X0,t

α = (Y T
t−1Yt−1)

−1Y T
t−1X0,t,

where Yt−1 = [X0,t−1, X1,t−1, X2,t−1, X3,t−1], and Y T
t−1 is the transpose of

matrix Yt−1. When solving the system in the first 4 iterations (due to the sparse
matrix Y ), regularization is applied with the addition of 1 on the main diagonal.

Xi,t−1 =


xi,0

xi,1

...
xi,t−1

 , X0,t =


x0,1

x0,2

...
x0,t

 , α =


α0

α1

α2

α3


Thus, iteratively, up to the last known value at step t, all 4 coefficients αi

are obtained, which are then substituted into the original equation to obtain the
prediction ŷt+1.

Thus, an iterative adaptive method with four adaptation parameters is ob-
tained – the “Triple Correction Method” or abbreviated “TCM”. This is the
form in which it is further used in the implemented algorithms.

We also propose a modification of this method the “Corrected Triple Cor-
rection Method” (CTCM). The modification is that at the last iteration the ob-
tained predicted t+ 1 value is multiplied by (1 + percentile(MPEt, 80)), where

percentile(MPEt, 80) is the 80th percentile of allMPEj =
RVj−hj

RVj
, j = 0, . . . , t.

The 80th percentile is taken from empirical considerations and is in general a
parameter of the CTCM model.

As a result, for CTCM the forecast at the moment t+ 1 is calculated by the
formula:

ŷt+1 = (α0x0,t + α1x1,t + α2x2,t + α3x3,t)(̇1 + percentile(MPEt, 80))

Thus, the correction allows to partially account for the percentage error made
in the previous fitting steps and improve the prediction result. It is important
to note that uncertainties for the adjustment are counted with the sign. Both
positive and negative MPE values should be taken into account.

4.8 Methodology for model comparison

Errors are calculated for two time intervals 01.01.2018 - 01.01.2022 and 01.01.2018
- 02.04.2023. Thus, we compare the predictive ability of the models not only in
sliding windows, but also in intervals with fundamentally different patterns of
time series behavior.
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The error metrics used is:

MAPE =
100%

K

K∑
j=1

|RVj − hj |
RVj

, (3)

MAE =
1

K

K∑
j=1

|RVj − hj |, (4)

MSE =
1

K

K∑
j=1

(RVj − hj)
2, (5)

where hj – forecast at time j, RVj – value of realized volatility on day j. In
this article, all forecasts are made 1 step ahead 211 times, i.e. K = 211.

The target error metric is MAPE, as it allows us to compare models in terms
of practical applicability. Also this error is more indicative at different intervals
under condition of jumps and outliers of predicted series.

5 Results

The following tables and graphs show forecasting errors of RV Bitcoin and RV
E-mini S&P-500 by different methods from 01.01.2018 to 01.01.2022 (column
2022) and from 01.01.2018 to 02.04.2023 (column 2023). Errors are ordered by
increasing MAPE in column 2022. Boostings and ARMA are presented in two
specifications, as one specification is selected as the best by MAPE and the other
by MAE.

No transfer learning is applied to the ARIMA models. Also, the results for
both processes showed that reducing the length of the windows has a negative
effect on the prediction results. Thus, the sliding window length of 399 values in
this article is the best.

5.1 Bitcoin

Tab. 1 shows the errors of Bitcoin RV forecasts. The CTCM model was the best
in both periods, outperforming neural networks, ARMA, and boosting. Among
neural networks CNN with one input and one output was the best, yielding
slightly to CTCM. The errors of the MAPE forecasts, which also include 2022
and the first quarter, are larger by about 1% for all of the above methods. The
year 2022 and early 2023 for RV Bitcoin are characterized by significant global
shocks, which reduces the predictability of the time series. Moreover, all models
have lower MAE and MSE over a wider time horizon in contrast to MAPE. It
is also interesting that the best models for one metric are not the best models
for the other. However, the target metric in this paper is MAPE, so the models
are ordered by this error. Thus, the best MAPE model for both time intervals
was CTCM with an error of 21.075% to 2022 and 21.996% to Q1 2023.
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2022 2023

MAPE MAE MSE MAPE MAE MSE

CTCM 21.075 0.01 0.00044 21.996 0.009 0.00033

M 2 CNN TS 1 21.399 0.01 0.00045 22.792 0.009 0.00033

M 1 CNN TS 1 21.57 0.01 0.00044 22.728 0.009 0.00033

M 1 CNN TS 2 22.071 0.01 0.00043 23.164 0.009 0.00032

M 2 CNN TS 2 22.206 0.01 0.00044 23.206 0.009 0.00033

ARMA (7, 9) 23.853 0.01 0.00044 25.276 0.010 0.00033

ARMA (1, 1) 24.014 0.01 0.00042 24.825 0.009 0.00031

boost 0.2 0.4 2 24.353 0.01 0.00044 25.568 0.010 0.00034

HAR RV (5, 21) 25.372 0.011 0.0005 26.33 0.01 0.00037

boost 0.6 0.3 5 25.419 0.010 0.00039 27.128 0.010 0.00032

TCM 25.588 0.011 0.00043 25.739 0.01 0.00032

Table 1: Model errors for RV Bitcoin.

Fig. 1 shows graphs of predictions on delayed intervals of realized Bitcoin
volatility, the HAR RV benchmark model, the CNN single-layer model, CTCM,
ARMA and boostings, which showed the best results among all ARMAs and
boostings. As can be seen from the graphs, the HAR RV model actually flattens
the original data series. The CTCM improves the TCM prediction, but, in sum,
slightly underestimates the peaks relative to the TCM. For example, this can be
observed in May-June 2021. Boosting and ARMA overestimate relative to quiet
periods and underestimate peaks. Neural network models show similar behavior
to CTCM, which is logical given the proximity of the errors. The interval, which
includes 2022 and Q1 2023, is characterized by many fluctuations that are not
well predicted, which increases MAPE for all methods.
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Fig. 1: The red line is Bitcoin RV, the others is predictions of the corresponding
models.

5.2 E-mini S&P500

For the RV E-mini S&P-500 the best MAPE is obtained by the CTCM model
and is 25.311% (Tab. 2). The best MAPE and MAE boosting models match and
outperform ARMA and neural network models on the target metric. Also, it is
important to note that, like for RV Bitcoin, the MAPE in the second interval is
larger than the MAPE in the first. This suggests the difficulty of forecasting in
2022 due to the characteristics of global economic and geopolitics. At the same
time, the HAR RV model is significantly inferior to all of the above models.

2022 2023

MAPE MAE MSE MAPE MAE MSE

CTCM 25.311 0.003 0.00002 26.549 0.003 0.00002

boost 0.2 0.1 8 26.430 0.002 0.00002 28.338 0.003 0.00002

boost 0.2 0.1 8 26.430 0.002 0.00002 28.338 0.003 0.00002

ARMA (5, 5) 26.536 0.003 0.00002 27.001 0.003 0.00002

ARMA (3, 1) 26.761 0.003 0.00003 27.028 0.003 0.00002

TCM 26.936 0.002 0.00002 27.583 0.003 0.00002

M 1 CNN TS 1 27.108 0.003 0.00003 27.739 0.003 0.00003

M 2 CNN TS 1 27.513 0.003 0.00003 27.858 0.003 0.00003

M 1 CNN TS 2 27.527 0.003 0.00002 27.982 0.003 0.00002

M 2 CNN TS 2 27.971 0.003 0.00003 28.166 0.003 0.00003

HAR RV (5, 21) 30.52 0.003 0.00003 30.059 0.003 0.00003

Table 2: Model errors for RV E-mini S&P 500.
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Fig. 2 shows graphs of forecasts on pending intervals of realized volatility
E-mini S&P500, reference model HAR, one-layer model CNN, CTCM, ARMA
and boosting, which showed the best results among all ARMA and boosting. As
you can see from the charts, the HAR, CTCM and TCM models for the futures
behave very similarly to these same models for RV Bitcoin. However, for this se-
ries the best ARMA and boostings behave very similarly, unlike neural networks,
which in this case tend to underestimate peaks and average small fluctuations.
The interval from early 2022 to Q1 2023 is characterized by increasing volatility
and fluctuations, which led to an increase in MAPE for all methods except HAR.

Fig. 2: The red line is RV E-mini S&P 500, the others is the forecasts of the
corresponding models.

5.3 Transfer Learning

Tab. 3 and Tab. 4 show the MAPE, MAE, MSE of the corresponding models
using TL.

Interesting conclusions for the transfer learning of RV Bitcoin:

1. In the case of RV Bitcoin, the best MAPEs at both time intervals are achieved
using tbbss transfer learning for neural networks. These results are inferior
to what was obtained without transfer learning.

2. In the case of tsb transfer for RV Bitcoin, we observe, in general, a deterio-
ration of prediction quality relative to methods without transfer.

3. In the case of neural networks and tbbss transfer, the deterioration may
be due to the fact that these two assets are poorly suited for cross-transfer
learning within the features of the neural network architecture. At the same
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time, the tbbss transfer shows an improvement in the predictive ability of
the boostings. The transfer learning will be investigated in more detail and
extensively in future works.

2022 2023

MAPE MAE MSE MAPE MAE MSE

M 1 CNN TS 1 tbbss 22.785 0.01 0.00043 24.093 0.009 0.00032

M 2 CNN TS 1 tbbss 23.060 0.01 0.00043 24.272 0.009 0.00033

boost 0.1 0.9 3 tbbss 23.485 0.010 0.00045 24.170 0.010 0.00033

boost 0.2 0.6 8 tbbss 23.784 0.010 0.00040 24.968 0.009 0.00031

M 1 CNN TS 1 tsb 25.121 0.011 0.00043 26.302 0.01 0.00033

M 2 CNN TS 1 tsb 25.341 0.011 0.00045 26.519 0.01 0.00034

boost 0.2 0.5 6 tsb 28.966 0.013 0.00063 32.764 0.014 0.00054

boost 0.8 0.4 7 tsb 29.742 0.013 0.00063 34.590 0.014 0.00054

Table 3: Model TL errors for RV Bitcoin.

Interesting conclusions for the transfer learning of RV E-mini S&P500:

1. The best MAPE error for the RV E-mini S&P500 is obtained by a single layer
neural network model with tbbss-type transfer learning and is 26.456%.

2. neural network models show less MAPE than boostings.
3. tbbss-type transfers for both neural networks and boostings show higher

precision on the target metric than the tbs transfer.
4. Tbs transitions for boostings show significant degradation of prediction pre-

cision for all metrics. This may be due to the fact that Bitcoin is a much
more volatile asset. It may also indicate some peculiarities and limitations
of transfer learning for boostings, which will be investigated in further work.

2022 2023

MAPE MAE MSE MAPE MAE MSE

M 1 CNN TS 1 tbbss 26.456 0.003 0.00003 27.042 0.003 0.00003

M 2 CNN TS 1 tbbss 26.725 0.003 0.00004 26.998 0.003 0.00003

M 1 CNN TS 1 tbs 26.914 0.003 0.00004 29.225 0.004 0.00004

M 2 CNN TS 1 tbs 27.68 0.003 0.00005 30.279 0.004 0.00004

boost 0.2 0.2 10 tbbss 28.658 0.003 0.00002 30.628 0.003 0.00003

boost 0.7 0.4 4 tbbss 29.708 0.003 0.00002 31.084 0.003 0.00002

boost 0.9 0.7 1 tbs 93.682 0.006 0.00006 121.266 0.011 0.00029

Table 4: Model TL errors for RV E-mini S&P 500.

6 Discussion and conclusion

The results of this work can be summarized in two main theses:
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1. The proposed CTCM model showed results outperforming neural networks,
boostings, HAR RV and ARMA models both with and without transfer
learning. This model requires a more detailed study not a large number of
assets, which will be done in future works. Also, these methods are easy to
handle and have low run time.

2. The paper also clearly shows the difference in the forecast accuracy, and,
accordingly, in the behavior of the studied time series. As we know, the
second period is very saturated with geopolitical and economic events, which
significantly affected both Bitcoin and S&P500. Thus, it is important to
take into account when learning (or transferring) not only the proximity of
the processes themselves, but also the proximity of events and shocks that
occurred to the assets at certain points in time.

All this means that one way to improve forecasting results is not only to
develop a new model specification, but also to take into account in it various
shocks related to the external environment and other assets.

7 Future work

In future works it is planned to investigate the developed TCM/CTMC methods
in more detail on a larger number of assets, as well as the phenomenon of learning
transfer. TCM and CTMC have shown results that outperform other methods
under consideration, which may indicate their practical applicability and quality.
This will be tested on a much larger number of assets.

The transfers, although they did not improve the precision of forecasts for
neural networks, still improved the precision of boostings, which may indicate
their potential applicability with a proper selection of assets and methods. Spe-
cial attention will be paid to the method of selecting the assets from which the
transfer is performed, as this should largely affect the quality of the forecast.
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