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Abstract. Despite the growing abundance of data and its growing importance 

with respect to the booming Machine Learning techniques, certain domains are 

still choked by limited datasets. Obtaining human-labeled data of proper quality is 

generally costly, as these activities are often outsourced to low-motivated per-

formers of Crowdsourcing platforms. To validate their outcome, typically such 

redundant data quality control methods as ground truth and majority consensus 

are used. In our paper we propose a non-redundant method for prediction of 

crowdworkers’ output quality in web UI labeling tasks, based on homogeneity of 

distributions assessed with two-sample Kolmogorov-Smirnov test. Using a dataset 

of about 500 screenshots with over 74,000 UI elements located and classified by 

11 trusted labelers and 298 Amazon MTurk crowdworkers, we demonstrate the 

advantage of our approach over the baseline model based on mean Time-on-Task. 

Exploring different dataset partitions, we show that with the trusted set size of 17-

27% UIs our “distributional ground truth” model can achieve R2s of over 0.8 and 

help to obviate the ancillary work effort and expenses. 

Keywords: Training Data Quality, Crowdsourcing, Image Labeling, User Inter-

faces. 

1 Introduction 

The threshold of data volume that allows AI/ML methods to become effective for most 

practical tasks is estimated as millions of labeled data samples [1]. They say that data 

are big and ubiquitous nowadays, but relevant and high-quality data is not so easy or 

cheap to obtain, particularly if it involves human activities [2, 3]. In most domains, the 

best training datasets are produced in the process of data labeling, but employing ap-

propriately trained and motivated specialists for this end is generally costly. 

Correspondingly, relatively few research groups and IT industry development 

teams can afford full-time annotators, and data labeling tasks are often outsourced. 

Typically for any outsourcing, this imposes additional requirements for controlling 

the quality of the outsourced task’s outcome. Perhaps not so typical is that the per-

formers of the outsourced data labeling are by and large non-specialists, have low 

motivation and get rather low wage for their work [4]. The reason is that many ML-

related Human Intelligence Tasks (HITs) just require their performer to be a human, 

and are thus rather tedious, repetitive and trivial. 
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1.1 Related Work in Data Quality Control 

Currently, much of the outsourced data labeling is done via the so-called crowdsourc-

ing (crowdworking) platforms, whose development went hand in hand with the pre-

sent AI/ML boom: Amazon Mechanical Turk (AMT) (2005), microworkers.com 

(2009), Yandex.Toloka (2014), Google’s AutoML (2018), etc. The core challenge in 

crowdsourcing today is obtaining data of appropriate quality [5], and the platforms 

struggle to support data quality assessment and control [6]. Many meta-tools that 

emerged lately are aimed specifically on adding such effective capabilities: CDAS, 

Crowd Truth, iCrowd, DOCS for AMT, and so on [7]. A similar trend is the platforms 

that specialize in tasks of a particular kind or from a specific domain, e.g. Mighty AI, 

Hive (.ai), Scale (.ai), etc. for AI in automotive industry [8]. 

A comprehensive review of quality control methods for crowdsourcing is provided 

in [6], where the methods are organized into three major groups: individual, group 

and computation-based. The former two generally imply involvement of trusted hu-

mans into assessment of the annotators or of the tasks output, thus suggesting addi-

tional overhead in the work effort. Of the crowd data quality control methods, majori-

ty/group consensus (MC) and ground truth (GT) are arguably the most widely used, 

being also supported in most of the platforms [6]. A trendy direction of research with-

in this sub-field is supplementing these two methods for more effective aggregation of 

the results or allocation of the workers. For instance, in [9] the authors proposed sta-

tistical quality estimation based on a two-stage probabilistic generative model for 

crowdsourcing tasks implying unstructured output. In [10] they studied optimal distri-

bution of training set answers, and it was shown that accuracy of majority voting is 

highest if the labels in training data follow a uniform distribution. An extension of the 

GT method based on probability distributions was proposed in [11], where the deci-

sion whether to run a second crowd labeling on an image depends upon the “trusted” 

distribution of labels. In any case, MC and GT imply redundancy (several trusted or 

candidate workers performing the same task), which has been the mainstream ap-

proach in the crowdsourcing quality assessment for already more than a decade [9]. 

The third group of the quality control methods, the computation-based ones, holds 

the potential for non-redundant data quality control, which could effectively decrease 

the share of unnecessary data that essentially goes to waste. The two relevant ap-

proaches are outlier analysis that is duly mentioned in [6] and interlaboratory compar-

isons that is widely used in Metrology [12]. An example of the former applied to 

crowdsourcing is [13], where they evaluated performance of UIs. The authors did not 

find statistically significant differences for the data collected in the lab settings and 

through the AMT platform. This however required resolving certain practical chal-

lenges, particularly in outlier detection. 

The methodology of the ISO 13528:2015 Statistical methods for use in proficiency 

testing by interlaboratory comparison standard is mostly built upon the “allowed er-

ror” and includes comparison of the measurements to some known distributions [12, 

ch. 8.4]. Similarly, certain methods in crowdsourcing quality control, some of which 

are already implemented in the platforms, involve comparing the workers’ outcome or 

some secondary parameters to their “trusted” values. The foremost example is the 
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Time-on-Task parameter [6], for which reasonable thresholds are relatively easy to set 

up. A malicious crowdworker, however, after learning about this and similar behav-

ior-related parameters can adjust their behavior to manipulate them, thus nullifying 

the quality control. So, we believe that “break-proof” approaches in this field need to 

be based on non-obvious characteristics of the outcome. In particular, in developing 

our “Distributional Ground Truth” (DGT) method we propose focusing on statistical 

distributions in trusted data and measure the candidate data’s departure from them. 

1.2 The Research Question 

In our previous research work [14], we found that crowdworkers’ output quality is 

statistically significantly correlated with the fit of a frequency distribution in their 

data to a power law, which acted as a sort of “ground truth”. The R
2
 = 0.504 that we 

obtained was somehow better than the R
2
 = 0.432 value for the baseline quality con-

trol parameter, the Time-on-Task. In the current paper, we introduce a trusted dataset 

and retrieve a “ground truth” distribution from it, instead of relying on a “common 

sense” or a domain-dependent distribution. 

The evaluation of the DGT method’s applicability is done for user interface (UI) 

screenshot labeling task that is gaining in popularity as computer vision methods are 

seeing wider application in human-computer interaction (HCI), particularly for UI 

visual analysis [15], but for which no dedicated quality control methods had been 

developed, to the best of our knowledge. Meanwhile, HCI does extensively rely on 

crowdsourcing: e.g. for solving small UI design problems at a large leveraging diver-

sity of microtasking results in CrowdDesign [16], to adapt web layouts to a variety of 

different screen sizes in CrowdAdapt [17], and so on. 

The rest of the paper is organized as follows. In Section 2, we present the method 

and the involved apparatus, including Kolmogorov-Smirnov test for 2 samples, which 

is the statistical foundation of the DGT method. Then we describe our experimental 

study for its evaluation, which involved three sessions: 1) with the 11 trusted labelers, 

2) with the 22 verifiers of the trusted labelers’ output, and 3) with 298 AMT 

crowdworkers. In Section 3 we analyze the data, evaluate the DGT method and com-

pare the results to the baselines in data quality control. In the final sections, we dis-

cuss the results, note the limitations of our findings, present the contributions and 

take-aways and outline directions for further research. 

2 The Method and the Experimental Study 

2.1 The Distributional Ground Truth (DGT) Method 

With respect to the classifications provided in [6], the DGT method that we propose 

falls into such categories as “data quality”, “accuracy”, “computation-based” and 

“outlier analysis”. The principal idea is testing of distributions’ equality (homogenei-

ty), i.e. calculation of statistical distance between the distribution in a trusted dataset 

and in the assessed dataset (in our particular case, produced by crowdlabelers of un-
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certain motivation and skill). In this, we do not mean the distributions as probability 

distributions or generalized functions, but rather as frequency distributions. 

The distance measure appropriate for the purposes of the method can be provided 

by Kolmogorov-Smirnov (KS) nonparametric test for two samples. The test compares 

the samples’ cumulative distributions and computes p-value that depends on the larg-

est discrepancy (distance) between the distributions [18]. Being more powerful than 

Mann-Whitney’s test used to compare the medians of two unpaired groups of data, 

KS test is sensitive to differences in both location and shape of the distributions. The 

null hypothesis is that both samples are randomly drawn from the same set of values. 

Among the assumptions of KS test for two samples are: 

 the samples are mutually independent, 

 the scale of measurement is at least ordinal, 

 the variables are continuous. 

Of the two statistics provided by KS test, we are going to rely on p-values, since the 

distance measures D may have different degrees of freedom and are not directly com-

parable. Since the values for the KS distribution functions are known and tabulated, 

the computational complexity of the test is defined by the sorting stage, and thus is 

not worse than O(n
2
), some algorithms even reducing it to O(n) [19]. Another ad-

vantage of the KS test is that it can work with relatively low number of values in the 

two distributions, unlike for testing the fit to power law [20]. Actually, when the sam-

ples sizes are close, like we plan to have, increasing one sample may lead to the para-

doxical higher bias in the KS test [21]. So, by design, the DGT method is appropriate 

for application with a limited number of samples typical for crowdsourced HITs, un-

like power law that we used in [14]. 

2.2 The Experimental Evaluation 

The objective of the experiment was to explore the effectiveness of the DGT method 

in crowdsourced data quality control and to estimate the efficient size of the trusted 

set. The hypothesis is that the DGT method can be used to better explain performance 

of crowdworkers in UI labeling tasks compared to the baseline or the alternative fac-

tors we are about to consider. An important note is that although the trusted labelers 

and the crowdsourcers had worked with the same material, the study design ensures 

that the trusted and the testing sets never overlap, so redundancy does not emerge. 

The Trusted Set Labeling. The objective of our first experimental session was to 

obtain the trusted set that could provide the “distributional ground truth” in our study. 

Material. The material for the UI labeling was screenshots of homepages of websites 

belonging to higher educational organizations (universities, colleges, etc.). These 

were collected by a dedicated Python script crawling through URLs that we acquired 

from various catalogues (DBPedia, etc.) and then undergoing manual screening (see 

in [14]). Overall, 497 screenshots were selected based on the following criteria: 
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 University or college corporate website with reasonably robust functionality; 

 Not overly famous university; 

 Website content in English and reasonably diverse (i.e. no photos-only websites); 

 Reasonable diversity in website designs (colors, page layouts, etc.). 

Participants. The trusted labelers were student members of the Novosibirsk State 

Technical University crowd-intelligence lab, who volunteered to work in the project 

and provided informed consent. In total, there were 11 of them (6 male, 5 female), 

with age ranging from 20 to 24 (mean = 20.5, SD = 0.74). All the labelers had normal 

or corrected to normal vision and reasonable experience with web UIs and IT. 

Procedure. To perform the task, the participants used LabelImg 

(https://github.com/tzutalin/labelImg), a third-party dedicated software tool they were 

asked to install on their computers. It allows drawing bounding rectangle around an 

image element, specifying a label for it, and saving the results as XML files 

(PASCAL VOC format). The screenshots were distributed among the participants 

near evenly, but no random assignment was performed. The labelers worked inde-

pendently and on their own computer equipment, and each of them was provided with 

the identical instructions manual. 

Design. We have devised the list of 20 labeling classes for the UI elements. In that, 

we sought to cover the three major groups of visual objects specific for web UIs: 

graphical content elements, textual content elements, and interface elements. The 

names and descriptions of the classes can be found in [7, Table 1]. 

The output of the labeling was the collection of XML files, each corresponding to 

its UI. As per Pascal VOC format, for each labeled UI element there was the specifi-

cation of the bounding box (xmin-top left, ymin-top left, xmax-

bottom right, ymax-bottom right) and the name of the class. Using dedi-

cated scripts, we derived the following variables for each of the 11 labelers: 

 distribution of classes, i.e. the number of labels in each class (both pre-defined and 

custom); 

 mean number of labeled elements per UI: EUIT. 

As the labeling was performed at the participants’ convenience, we did not measure 

the Time-on-Task. 

The Labeling Quality Verification. The objective of the second experimental ses-

sion was to obtain the assessments of the trusted labelers’ performance. 

Material. The verification was performed for the UIs produced by the trusted labelers. 

Each labeled UI was represented as the combination of the screenshot file (exactly the 

same as the trusted labelers used) and the Pascal VOC XML file containing the label-

ing results. These were rendered together in dedicated web-based software, which 

would add the verification information to the XML. 
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Participants. The total number of participants who performed the verification was 20 

(10 male, 10 female), and their age ranged from 20 to 22 (mean = 21.1, SD = 0.45). 

They were next year’s students of the Novosibirsk State Technical University crowd-

intelligence lab, and none of them had participated in the aforementioned labeling. In 

a similar fashion, they volunteered to work in the project and provided informed con-

sent. All the participants had normal or corrected to normal vision and reasonable 

experience with web UIs and IT. They did not report previous experience of working 

with labeling tools, and they were provided with a specially developed instruction. 

Procedure. The labeled UIs were distributed among the 20 verifiers near evenly, but 

without random assignment. The verification process was performed independently 

for each UI element in each screenshot, so that the element’s labeling could be identi-

fied as correct or incorrect. The reasons for a label to be marked as incorrect were 

described in the detailed instructions provided to the verifiers and included: too much 

empty space in the bounding box, cutting neighboring UI elements (except for nest-

ing), incorrect object class, etc. Also, for each labeled UI the verifying participant was 

asked to provide subjective assessment of the labeling completeness, i.e. if all the 

visible UI elements were labeled. 

The participants worked with a dedicated web-based verification software that we 

created. Given a set of screenshot image files and corresponding label files in Pascal 

VOC XML serialization, it allowed to quickly navigate and verify the labeled UIs. 

Design. From the binary correct/incorrect data for each UI element recorded by the 

verification software, we calculated the PrecisionT for each i-th trusted labeler, as the 

average precision per the Ni processed screenshots: 

                  
       

                 
 (1) 

The subjective completeness (SC) ranging from 0 (lowest) to 100 (highest) for each of 

Ni labeled UIs was similarly averaged for each i-th trusted labeler: 

                 (2) 

The ultimate quality index (Q) reflecting the performance of each i-th trusted labeler 

was then defined as follows: 

                    (3) 

The quality index thus incorporated both precision and completeness of the labeling 

and was subsequently used to order the labelers in the trusted set. 

The Crowdsourced Labeling. The objective of this session was to collect the data 

from crowdworkers, for the subsequent comparison with the trusted set. In order to 

utilize the distributional ground truth method, we needed enough UIs and UI elements 

to form distributions of the results for each crowdworker. So, our HIT (Human Intel-

ligence Task) in AMT was designed accordingly, as described below. 
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Material. The material for the crowdsourced labeling was the same screenshots up-

loaded to AMT (only the PNG files). From the 497 initial screenshots, 2 were exclud-

ed due to the aforementioned technical problems. 

The budget allocated for the AMT experimental session was 300 USD, in accord-

ance with our estimation of an average UI labeling task difficulty and the required 

work effort of 5 minutes. 

Procedure (HIT). The labeling HIT was designed using the Crowd HTML ele-

ments provided by AMT, based on the crowd-form and crowd-bounding-

box widgets, with the screenshot URL as input parameter. HITs could be previewed 

and skipped by the crowd workers. 

Over a time span of 44 days, the labeling and set HITs were available on AMT in 4 

batches of 80, 160, 160 and 97 screenshots. Within a batch, workers could submit as 

many labeling HITs as they wanted. To increase the diversity, however, workers who 

had successfully labeled 20 or more screenshots in a batch were not allowed to accept 

labeling HITs in the following batch. 

Design. Exactly one label per bounding box and only labels from the list of pre-

defined classes could be selected by the crowd workers. However, the classes were re-

organized and their number decreased to 10 (see the list of classes in [14]), due to the 

following considerations: 

 generally lower motivation of the crowdworkers; 

 to explore if the distributional ground truth method can work independently of the 

particular list of classes in the trusted and the testing set. 

The obviously malicious contributions would be rejected after our quick visual in-

spection, and crowdworkers who repeatedly submitted them were excluded from fur-

ther submissions. All other submissions were approved and received the rewards (on 

average, 0.26 USD per accepted HIT). From the UI labeling results and the data rec-

orded by AMT, we derived the following variables for each worker: 

 distribution of classes, i.e. the number of labels in each class; 

 mean number of labeled elements per UI (HIT): EUIAMT; 

 mean Time-on-Task for each worker: ToTAMT; 

 PrecisionAMT, as the reflection of the worker’s performance, was calculated based 

on the number of accepted and rejected HITs for the worker, in a manner analo-

gous to (1): 

              
            

                         
 (4) 

Participants. The HIT was generally favorably encountered by AMT crowdworkers, 

with no negative comments or complaints. It total, there were 298 recorded workers, 

but 20 of them were blocked as malicious. According to the geo information provided 

by AMT, most of them were from: USA (44.8%), Brazil (15.5%) and India (13.8%). 
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3 Results 

The dataset collected in our study is available at 

https://figshare.com/s/356b11d5b117014deda2. The code in Python and R is available 

at https://figshare.com/s/582f5aa0b564e0512f41. Some additional detail on the 

crowdworkers’ budget can be found in [14]. 

3.1 Descriptive Statistics 

The Trusted Set. In total, the labelers processed 495 UIs (2 screenshots had technical 

problems and were discarded) with 42716 labeled UI elements, of which 39803 

(93.2%) belonged to the 20 pre-defined classes. We did some minor adjustments in 

the erroneous custom classes (e.g., joining textt with text and link’ with link). 

During the verification of the labeling, two more UIs (0.4%) were removed from 

further analysis due to technical problems with the XML files, so 493 UIs remained. 

For them the 20 verifiers provided 37574 correct and 4977 incorrect ratings for the 

labeled UI elements, as well as the SC assessments for 487 UIs (for another 6, SC 

wasn’t specified). In Table 1 we show the statistics for the trusted labelers ordered by 

the quality index (3) that incorporates both PrecisionT and SC. Their order in the 

trusted set will be considered in the subsequent DGT method application. 

Table 1. The trusted labelers’ quality of work verified. 

Labeler UIs EUIT 
Precision SC Quality 

index (Q) Mean SD Mean SD 

VY 43 87.4 0.928 0.150 95.5 7.0 0.886 

SV 44 80.0 0.974 0.056 80.4 12.9 0.783 

KK 44 89.3 0.944 0.105 82.5 11.5 0.779 

GD 44 121.6 0.899 0.078 84.3 8.1 0.758 

PV 44 113.5 0.916 0.180 81.7 17.1 0.748 

SMl 43 105.9 0.895 0.078 77.5 11.6 0.694 

NE 44 61.6 0.851 0.197 78.3 24.2 0.666 

AA 55 89.3 0.890 0.151 73.0 15.1 0.649 

PE 43 39.6 0.779 0.147 72.0 17.2 0.561 

MA 44 76.0 0.720 0.136 75.1 12.2 0.541 

SMr 45 85.1 0.959 0.082 56.0 29.0 0.537 

Total/mean 493 86.3 0.887 0.149 77.7 18.7 0.698 

 

The correlation between EUIT and SC was not significant (r11 = 0.496, p = 0.121), 

which might suggest that the “true” number of elements in UIs is variable, even after 

averaging in reasonably large samples (43-55 UIs). Neither was EUIT significantly 

correlated with PrecisionT (r11 = 0.478, p = 0.137) or Q (r11 = 0.461, p = 0.154). 

https://figshare.com/s/582f5aa0b564e0512f41


9 

The AMT set. In total, we collected 31676 labeled UI elements for 488 accepted and 

754 rejected HITs. The rejection reasons were as follows (one reject could combine 

several reasons, so they do not sum up to 754): 

 ‘incomplete labeling – there are significantly more objects in the screenshot’: 415; 

 ‘groups of objects labeled together instead of individually’: 239; 

 ‘imprecise bounding boxes’: 207; 

 ‘randomly labeled non-existing objects’: 178; 

 ‘empty submission’: 139; 

 ‘wrong object types labeled’: 79. 

The mean PrecisionAMT was 0.442 (SD = 0.475), as opposed to the mean PrecisionT = 

0.887 (SD = 0.149) in the trusted set (even though the verification process in the latter 

was considerably more thorough), which reinforces the need for the crowdsourcing 

data quality control. The mean EUIAMT was 28.2 (SD = 21.1), i.e. 3 times lower than 

EUIT. The mean number of UI elements in accepted HITs was 58.3, still 1.6 times 

lower than the respective number in the trusted set. The correlation between the 

EUIAMT and PrecisionAMT per workers turned out to be highly significant (r298 = 0.751, 

p < 0.001), unlike in the trusted set (r11 = 0.478). 

The total amount of time spent on the 1242 HITs by all the workers was 665322 s, 

and on average a worker devoted 635 s (SD = 481 s) to a UI labeling HIT, the correla-

tion between ToTAMT and  PrecisionAMT being significant (r298 = 0.449, p < 0.001), but 

considerably lower than for EUIAMT. The correlation between ToTAMT and EUIAMT 

was also significant, but not as high as one might expect (r298 = 0.580, p < 0.001). The 

mean Time-on-Task turned out to be more than twice as long compared to the 5 

minutes (300 s) that we estimated when planning the crowdsourcing session budget. 

Interestingly, 22 workers who didn’t label a single UI element still spent 188416 s on 

the HITs, which reinforces our concerns about manipulating the Time-on-Task. 

The Testing Sets. To be included in the testing set, a worker must have attempted at 

least 10 HITs (accepted or rejected) and have labeled at least 100 UI elements, so that 

a reasonably representative distribution of classes could be composed. Of all the rec-

orded workers, only 20 (6.71%) have complied with this rule, but it was them who 

provided 272 (55.7%) of all accepted UIs and 17067 (53.9%) of all labeled elements. 

In the subsequent sub-chapter which is dedicated to the investigation of our DGT 

method’s effectiveness in predicting performance in crowdworkers, we are exploring 

different sizes of the trusted set, ranging from 1 to 9. The trusted labelers are included 

to the trusted set of a particular size in the order defined by their quality index (see in 

Table 1): e.g. {VY, SV, KK} for size 3. The screenshots labeled by the included 

trusted labelers are removed from the testing set, while the remaining ones form the 

testing sub-set, for which the distribution and the workers’ performance are re-

calculated. In other words, there is never a redundancy: in each setup, the sets of 

screenshots processed by the trusted labelers and the crowdworkers do not overlap. In 

Table 2, we show the descriptive statistics of the testing (sub-)sets (the number of 

labelers = 0 corresponds to the full testing set, which is included for reference only). 
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Table 2. The descriptive statistics of the testing sub-sets used in the DGT evaluation. 

Trusted set Testing (sub-)set 

# of labelers # of UIs % of UIs 
# of 

workers 

accepted 

HITs 

rejected 

HITs 
Precision (SD) 

0 - - 20 272 205 0.566 (0.453) 

1 43 8.79% 19 253 175 0.595 (0.439) 

2 87 17.72% 18 223 159 0.584 (0.454) 

3 131 26.68% 17 201 127 0.621 (0.438) 

4 175 35.64% 14 167 108 0.611 (0.436) 

5 219 44.60% 12 145 72 0.709 (0.355) 

6 262 53.25% 9 92 61 0.612 (0.408) 

7 306 62.20% 5 71 8 0.900 (0.120) 

8 360 74.53% 4 42 7 0.855 (0.145) 

9 403 81.91% 2 22 0 1.000 (0.000) 

3.2 The DGT Method Evaluation 

Our DGT method relies on the assumption that the distribution of classes in UI label-

ing tasks is indicative of the overall performance, operationalized as PrecisionAMT in 

our study. In Figure 1 we show the distributions of the classes for the 20 workers of 

the tested set (AMTi) and the overlaid distribution of the best trusted labeler (VY), 

which all resemble a power law distributions. For each of the workers, the classes 

were sorted by frequency, so the ranks on the horizontal axis may correspond to dif-

ferent classes. Then they were normalized by dividing each value by the mean fre-

quency for the worker. For the trusted labeler, the same procedure was performed, 

and also every two frequencies were averaged to one rank and value in the diagram 

(as trusted labelers had 20 pre-defined classes instead of 10 classes for the workers). 

The actual DGT method is straightforward now. For each tested worker, we take 

the distribution of the classes and apply the two-sample Kolmogorov-Smirnov test 

that compares it to the distribution of each labeler in the trusted set. The p-values 

produced by the tests are averaged for each worker and are used to predict precisions 

in the testing sub-set. So, we applied the method for all the sub-sets previously speci-

fied in Table 2 (even though with low number of workers in the testing sub-set the 

model makes little sense) and present the outcomes in Table 3. The best R
2
 = 0.855 

corresponding to the trusted set size = 2 (trusted labelers VY and SV) is highlighted. 

To evaluate our DGT model (with the best trusted set size = 2), we compared it to the 

baseline and considered some other alternative factors (see in Table 4). Particularly, 

we calculate R
2
s in regressions built for PrecisionAMT for the following variables: 

 ToTAMT – the baseline, often used in crowdsourcing quality control; 

 attempted HITs (accepted + rejected) – the factor that nominally reflects the in-

volvement of a worker in our study; 
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 EUIAMT – the factor that arguably best reflects the actual work effort by a worker in 

our UI labeling HITs; 

 GOFPL – the goodness-of-fit measure of a worker’s classes distribution to the pow-

er law distribution (obtained using the third-party plpva.r library that imple-

ments the test described in [20]). 

 

Fig. 1. The distributions of the labeling classes’ frequencies for the crowdworkers (AMTi) and 

the best trusted labeler (VY). 

4 Discussion 

The results of the DGT method evaluation imply that it might be applicable for the 

crowdsourcing data quality control in the UI labeling tasks that we considered. The 

R
2
s produced by the method were of 0.8 and higher for the reasonably practical ratios 

between the trusted and the testing sets’ sizes, 17-27% (Table 3). The ability of the 

method to predict performance in crowdworkers was considerably higher than that of 

the Time-on-Task factor (R
2
 = 0.401) that is traditionally used for this purpose and 

that we considered as a baseline. 
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Table 3. The crowdworkers’ performance prediction models resulting from the DGT method. 

Size of trusted set 

(# of trusted labelers) 

Size of testing sub-set 

(# of workers) 

The model 

R2 F, p 

8.79% (1) 91.21% (19) 0.658 F1,17 = 32.7, p < 0.001 

17.72% (2) 82.28% (18) 0.855 F1,16 = 94.5, p < 0.001 

26.68% (3) 73.32% (17) 0.789 F1,15 = 56.0, p < 0.001 

35.64% (4) 64.36% (14) 0.716 F1,12 = 30.3, p < 0.001 

44.60% (5) 55.40% (12) 0.539 F1,10 = 11.7, p = 0.007 

53.25% (6) 46.75% (9) 0.789 F1,7 = 26.1, p = 0.001 

62.20% (7) 37.80% (5) 0.107 F1,3 = 0.4, p = 0.591 

74.53% (8) 25.47% (4) 0.501 F1,2 = 2.0, p = 0.292 

81.91% (9) 18.09% (2) - - 

 

Meanwhile, an alternative factor EUIAMT that we also considered provided somehow 

superior R
2
 compared to the DGT model’s R

2
s in some of the testing setups (Table 4). 

This is understandable, since EUIAMT in our HIT was the best reflection of the work 

effort contributed to the task. We would however argue that the number of elements 

per UI is easily prone to malicious manipulations, similarly to the once indicative 

Time-on-Task. The latter in our study was inflated even by the workers who did not 

label a single UI element thus was not performing an actual task. Similarly, increased 

EUIAMT could be futilely exaggerated with relatively little effort, e.g. through random 

specification of labels, possibly even with browser automation scripts. Also, in the 

trusted set that corresponds to higher-quality labeling data, the effect of EUIT on either 

PrecisionT or Q was not significant, which questions the true impact of this factor. 

The results presented in the table suggest that R
2
 = 0.875 (F1,16 = 112.0, p < 0.001) for 

EUIAMT was marginally higher than R
2
 = 0.855 (F1,16 = 94.5, p < 0.001) for our DGT 

model, although somehow lower than R
2
 = 0.895 (F1,16 = 135.8, p < 0.001) for one of 

the trusted labelers (SV) in the model. The GOFPL factor was considerably less com-

pelling (R
2
 = 0.480, F1,16 = 14.8, p = 0.001), but still superior to the baseline ToTAMT 

(R
2
 = 0.401, F1,16 = 10.7, p = 0.005). 

Another issue worth discussing is whether the effectiveness of the DGT method is 

due to the KS test considering mostly the locations of the distributions in our context. 

Indeed, the mean EUIT = 86.3 was a great deal higher than the mean EUIAMT = 28.2, 

and the mean number of UI elements in accepted HITs (58.3) would be closer to 

EUIT. We however argue that the effect of precision in trusted labelers with respect to 

explaining the workers’ PrecisionAMT was more prominent than the effect of com-

pleteness as expressed by SCi. Indeed, of the considered two trusted labelers (see in 

Table 4), SV had higher R
2
 = 0.895 than VY’s R

2
 = 0.658, notably lower SCSV = 80.4 

in comparison to SCVY = 95.5, but higher PrecisionSV = 0.974 vs. PrecisionVY = 0.928. 

It might suggest that the effectiveness of the DGT method was mostly due to the dis-

tributions’ shapes, though surely this statistically unrepresentative example calls for 

further investigation. 
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Table 4. The detailed results for the predictive model for PrecisionAMT (trusted set size = 2). 

PrecisionAMT 
p-values from the KS test: Alternative factors 

with VY with SV Avg. HITs ToTAMT EUIAMT GOFPL 

0.974 0.856 0.837 0.847 39 191 56.31 0.492 

0 0.091 0.158 0.124 34 50 4.62 0.617 

1 0.276 0.937 0.606 32 558 70.13 0.706 

0.813 0.686 0.987 0.837 32 325 37.16 0.640 

0.731 0.974 0.704 0.839 26 102 24.00 0.589 

0 0.002 0.002 0.002 25 63 5.24 0.115 

0 0.066 0.012 0.039 23 126 4.39 0.354 

0 0.458 0.158 0.308 19 77 9.21 0.562 

0 0.019 0.023 0.021 19 94 6.11 0.406 

1 0.482 0.517 0.499 18 619 57.72 0.640 

1 0.686 0.704 0.695 18 232 39.06 0.600 

1 0.608 0.875 0.741 16 1370 60.81 0.592 

1 0.987 0.837 0.912 16 568 65.19 0.529 

1 0.913 0.751 0.832 14 427 71.43 0.627 

1 0.738 0.837 0.788 14 1326 68.43 0.639 

0 0.259 0.032 0.146 14 57 7.21 0.296 

1 0.913 0.751 0.832 12 837 76.83 0.659 

0 0.003 0.010 0.006 11 355 9.27 0.431 

R2 for 

PrecisionAMT: 
0.658 0.895 0.855 < 0.01 0.401 0.875 0.480 

 

The DGT method has certain inherent limitations. Arguably the strongest one is 

that a worker needs to produce enough results to compose a representative distribu-

tion of the classes – in our study, at least 100 UI elements labeled in 10 UIs. Indeed, 

the excluded workers contributed 216 (44.3%) of accepted HITs, which could not be 

covered by the method and would probably need to undergo different quality control 

procedures. However, one should consider that our experiment was artificially set up 

with a limited number of screenshots, whereas in real circumstances HIT design 

would be different. Moreover, the UI labeling task has an entry threshold – the work-

ers need to comprehend the classes, read instructions, etc., so the learning effect is a 

positive thing and fewer workers each performing more HITs should be preferred to 

the contrary situation. Another limitation is that the trusted set might be bound to UIs 

belonging to a particular domain, and the transferability of the trusted distributions to 

other domains (e.g. from websites of universities to museums) is so far unexplored. 

Finally, among the threats to validity we need to note that the assumptions for the 

two-sample KS test were not totally satisfied in our study. The variables (classes’ 

distributions) were not continuous and the number of their values was rather modest 

(although ranging in a large interval). E.g. in [18] it is noted that for small sample 
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sizes the nominal significance of 0.1 corresponds to the actual significance of 0.0835. 

However, the effects that we found in our study were rather strong and we probably 

can assume the findings are statistically valid. Also, we did try the ks.boot function 

in R that is considered an alternative to ks.test (adding simulation), but it did not 

produce any different p-values for our data. 

5 Conclusions 

The main contributions of our work can be summarized as follows: 

 we proposed and evaluated the Distributional Ground Truth method for data quali-

ty control, which implies zero redundancy, thus having the potential to obviate the 

ancillary work effort and expenses; 

 we demonstrated that shapes of classes’ distributions (labels’ frequencies) are re-

flective of the overall crowdworkers’ performance in UI labeling tasks; 

 we demonstrated advantage of comparing to a distribution obtained from a trusted 

dataset vs. a power law distribution, as previously done in [14]. 

At the current stage of research we must note that the boundaries for the DGT method 

applicability were not explored, neither has it been employed in real projects to assess 

the economic advantage over e.g. the widely used GT and MC methods due to the 

non-redundancy. In our context, one would probably have a GT of size 1, i.e. one 

completely and correctly labeled UI screenshot, and make sure that every worker has 

to label this, in a sort of an entrance-test to other HITs. Provided that in our AMT 

experimental session a worker on averaged labeled 4.17 screenshots, this would cor-

respond to the quality control process leading to wasting 24% of the outcome. In case 

of MC implying that at least 3 workers label a screenshot, the share of the largely 

unused results would be even greater, at 67%. 

In comparison to existing non-redundancy methods based on crowdworkers’ be-

havior (foremost, on Time-on-Task), DGT provides an important advantage in 

“break-proofness”, since it is based on regularities in true data. Thus, we see no un-

complicated way to imitate a trustworthy distribution of the classes for malicious 

workers even if they are aware of the employed data quality control method. 

A practical issue is the desired number and quality of trusted labelers. Our assump-

tion that trusted labelers with greater quality index would have “better” distributions 

was not confirmed in practice, as demonstrated by VY’s and SV’s R
2
s in Table 4. So, 

we plan to explore efficient approaches for composing trusted sets for the DGT meth-

od in our further research work. Currently, we would just recommend having reason-

able diversity of trusted labelers and assume that the averaged p-values negate the 

effect of individual discrepancies. 

Our further research prospects include exploration of the method’s applicability: 

whether it could be feasible in other crowdsourcing tasks, what are the efficient approach-

es for composing the trusted set, etc. However, even at the current stage of development 

we hope that our results can contribute to more efficient non-redundant crowd data quality 

control and thus to better utilization of human mind power in HCI-related ML tasks. 
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