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Abstract. Modern models for text generation show state-of-the-art re-
sults in many natural language processing tasks. In this work, we explore
the effectiveness of abstractive text summarization models for keyphrase
selection. A list of keyphrases is an important element of a text in
databases and repositories of electronic documents. In our experiments,
abstractive text summarization models fine-tuned for keyphrase genera-
tion show quite high results for a target text corpus. However, in most
cases, the zero-shot performance on other corpora and domains is signifi-
cantly lower. We investigate cross-domain limitations of abstractive text
summarization models for keyphrase generation. We present an evalu-
ation of the fine-tuned BART models for the keyphrase selection task
across six benchmark corpora for keyphrase extraction including scien-
tific texts from two domains and news texts. We explore the role of trans-
fer learning between different domains to improve the BART model per-
formance on small text corpora. Our experiments show that preliminary
fine-tuning on out-of-domain corpora can be effective under conditions
of a limited number of samples.

Keywords: Keyphrase extraction · BART · Transfer learning · Scholarly
document · Text summarization.

1 Introduction

The task of keyphrase generation aims at predicting a set of keyphrases summa-
rizing the content of the source text. Keyphrases are often indexed in databases
to improve the performance of information retrieval tools. Researchers select
keyphrases for their papers to increase their visibility in the scientific commu-
nity. Automatic selection of keyphrases for scholarly documents helps to analyze
the current research trends, recommend papers, and identify potential peer re-
viewers [39].
⋆ Supported by the grant of the President of the Russian Federation no. MK-

3118.2022.4.
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Fig. 1. An example of a source text with the corresponding list of from the Inspec
corpus [22]. The keyphrases that appear in the text are underlined.

Figure 1 demonstrates an example of a source text and its keyphrases. Some
keyphrases are present in the source text while others are absent. Most unsuper-
vised approaches for keyphrase selection have the purpose of keyphrase extrac-
tion, in other words, the ranking and selection of phrases that appear in the text.
Recent generative approaches produce both keyphrases present in the text and
those absent from it. These approaches utilize deep learning methods using the
encoder-decoder architecture [8, 32, 48] and various training techniques, such as
incorporating a copying mechanism [44], reinforcement learning [10], hierarchical
decoding [11], and multitask learning [26].

Currently, the models for automatic text generation achieve high results in
various natural language processing tasks. Since a list of keyphrases is some
type of summary of a scientific text, pre-trained models for abstractive summa-
rization appear to be effective for generating keyphrases as a sequence. In our
previous work [18, 19], we explored the performance of some of these models for
keyphrase generation. It was shown that BART [27] fine-tuned for generating
lists of keyphrases on texts from the target domain showed competitive results
as compared to several baselines. However, it can show lower performance on the
texts from other corpora and domains similar to other fine-tuned models. Our
goal is to evaluate whether we can transfer knowledge from the BART model
that was fine-tuned to generate keyphrases for one domain to another ones. We
seek to answer the following research questions:

– RQ1. How effective is a text summarization model fine-tuned on one corpus
or one domain for generating keyphrases from texts of other corpora or
domains in zero-shot settings?

– RQ2. Can we improve the model performance by adding training examples
from other corpora and domains?

– RQ3. With a small number of training examples, can the model perform as
effectively as a model fine-tuned on larger corpora?

– RQ4. Can transfer learning improve the model performance using a varying
size of training data?

The paper is organized as follows. Section 2 presents related works in the field.
In Section 3, we describe the corpora. Section 4 contains a brief description of
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the models we used. Section 5 presents the experimental setup. The results are
reported and discussed in Section 6. Section 7 concludes this paper.

2 Related Work

2.1 Abstractive Text Summarization using Pre-trained
Transformers

Pre-trained language models show impressive results in many natural language
processing (NLP) tasks. A pre-trained model is a saved network that is previ-
ously trained on a large dataset. This is a common and highly effective approach
to deep learning on small datasets [15]. Automatic text summarization is a rel-
evant trend in NLP. A summary can be generated through extractive, as well
as abstractive, methods. Abstractive methods are difficult to implement because
they need a lot of natural language processing. However, abstractive models,
such as BART [27], PEGASUS [49], and many others, allow us to generate novel
samples by either rephrasing or using new words, instead of simply extracting
the important sentences [21, 41].

Neural abstractive summarization based on pre-trained language models has
been studied by many researchers and showed a high performance with the aid of
large text corpora. In particular, abstractive summarization models were applied
for generating summaries in news [5, 13, 20, 52], scientific [6, 35, 45], sport [31],
and financial domains [42, 51]. One of the main challenges related to neural ab-
stractive summarization is that domain-shifting problems and overfitting could
occur with a small number of samples for the target corpora [12]. The use of
additional texts for other corpora is not always successful since different corpora
contain texts of different writing styles and forms. The annotation for abstrac-
tive summarization is costly. Therefore, exploring approaches to low-resource
abstractive summarization is very relevant and attracts the attention of scien-
tists.

2.2 Keyword Selection

Keyword selection approaches can be roughly divided into three categories: i)
actual keyword extraction, ii) keyword assignment, and iii) keyphrase genera-
tion [1, 8]. The actual keyword extraction involves extracting words directly
presented in the text. In keyword assignment, keywords are chosen from a pre-
defined set of terms, while documents are classified into thematic categories
according to their topics. Keyphrase generation aims to produce a set or string
of keywords using recent advances in sequence-to-sequence applications of neural
networks. In this work we focus on keyphrase generation but use some keyword
extraction approaches as baselines. Keyphrase generation allows us to generate
broad terms and keyphrases that are not presented in the source text in an
explicit form.
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To date, some scholars have examined neural models to generate multiple
keyphrases as a sequence [8, 39]. Chowdhury et al. [14] demonstrated that fine-
tuned BART shows competitive results in keyphrase generation compared with
the existing extractive neural models. In [23, 46], the authors experimented with
controllable text generation for producing keyphrases. The authors of [26] pro-
posed KeyBART, a new pre-training setup for the BART model that learns to
generate keyphrases in their original order in the source document. Shen and
Le [37] investigated the advantages of title attention and sequence code repre-
senting phrase order in a keyphrase sequence in improving Transformer-based
keyphrase generation.

The authors of [38] provided a comprehensive survey on recent advances
in keyphrase selection from pre-trained language models. They emphasize that
most existing keyphrase extraction datasets and studies are based on a few of the
most common topics and lack datasets and research related to other domains.
Therefore, transferring knowledge from one domain to another to build domain-
specific keyphrase extraction models is one of the major challenges for keyphrase
generation.

3 Data

The experiments are carried out on six corpora for keyphrase selection:

– Krapivin [25] and Inspec [22] containing scientific texts from the computer
science domain;

– PubMed [36] and NamedKeys [17], which include scientific texts from the
biomedical domain;

– DUC-2001 [43] and KPTimes [16] consisting of news texts.

The Krapivin corpus contains full papers divided into titles, abstracts, and bod-
ies. In this work, we separately utilized the abstract and body of the paper to
select keyphrases (Krapivin-A and Krapivin-T respectively). The original KPTi-
mes corpus is composed of 279,923 article-keyphrase pairs. Here, we used only a
test set of the original corpus containing 20,000 samples. Summary statistics for
the corpora are presented in Table 1. The most popular keyphrases are shown
in Table 2. A comparison of the contents of the corpora is given in Table 3.

4 Models

For keyphrase generation, we utilized BART-base [27], a transformer-based de-
noising autoencoder for pre-training a seq2seq model. The model has 12 layers,
768 hidden units per layer, and a total of 139M parameters. BART was pre-
trained by corrupting documents and then optimizing a reconstruction loss—the
cross-entropy between the decoder’s output and the original document. We fine-
tuned BART-base for six epochs with a maximum sequence length of 256 tokens.
We utilized a standard cross-entropy loss and the AdamW optimizer [30]. We
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Table 1. A summary statistics for the corpora. The average number of tokens was
obtained using NLTK [2]. The "±" sign is utilized to indicate a standard deviation.
The abbreviations in this table are CS — computer science, BM — biomedical, A —
abstract, and T — text (body).
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Size 2,294 2,293 2,000 1,320 3,049 308 20,000
Domain scientific, CS scientific, BM newsType of texts A T A T A
Avg. number of to-
kens

169.06
±68.58

8597.63
±2411.77

127.35
±65.03

5270.97
±2690.67

274.67
±99.88

848.22
±563.41

733.78
±477.49

Avg. number of
sentences

6.64
±2.69

343.95
±107.3

5.3
±2.73

206.81
±127.11

10.52
±3.66

34.74
±23.33

26.65
±22.19

Avg. keyphrases
per text

5.34±2.77 14.11
±6.41

5.4
±2.17

14.15
±5.2

8.08
±1.87

5.03
±1.88

Absent keyphrases,
%

51.3
±25.99

18.04
±19.69

43.8
±17.83

13.52
±19.7

1.04
±5.83

2.45
±7.94

35.72
±29.22

Number of unique
keyphrases

8,703 19,066 5,580 20,804 1,850 21,126

used the source text as an input of the model and a list of keyphrases in a string
format as an output. Keyphrases included in lists of keyphrases were separated
with commas.

As baselines, we used the implementations of TopicRank [4] and YAKE! [7]
from the PKE library [3] and KeyBART [26] that represents pre-trained BART-
based architecture to produce a sequence of keyphrases pre-trained on the OAGKX
dataset [9], which consists of 23 million scientific documents across multiple do-
mains.

5 Experimental Setup

We randomly split each corpus into a 70% training set and a 30% test set.
For BART, we performed three runs for each model and then calculated the
average results. Since TopicRank and YAKE! are unsupervised methods and
they require a pre-defined number of keyphrases to select, we extracted 5, 10,
and 15 keyphrases for each corpus and chose the best value for each metric.
KeyBART was used in zero-shot settings. The models were evaluated in terms
of the full-match F1-score (F1), ROUGE-1 (R1), ROUGE-L (RL) [28], and
BERTScore (BS) [50].

The full-match F1-score evaluates the number of exact matches between the
original and generated sets of keyphrases. It is calculated as a harmonic mean
of precision and recall.
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Table 2. Top-10 common keyphrases for the corpora.

Corpus Keyphrases (keyphrase — number of occurrences)
Krapivin scheduling – 36, performance evaluation – 25, data mining – 24,

computational complexity – 24, parallel algorithms – 22, fault tol-
erance – 22, approximation algorithms – 22, model checking – 21,
distributed systems – 21, preconditioning – 20

Inspec internet – 199, information resources – 97, probability – 70, com-
putational complexity – 69, optimisation – 60, gender issues – 49,
matrix algebra – 47, psychology – 46, human factors – 46, academic
libraries – 45

PubMed children – 24, breast cancer – 21, epidemiology – 20, internet –
19, quality of life – 19, preconception care – 16, pregnancy – 16,
apoptosis – 15, cancer – 13, magnetic resonance imaging – 13

NamedKeys CI – 245, OR – 144, reactive oxygen species – 142, ROS – 134,
confidence interval – 131, nitric oxide – 112, NO – 111, HR – 95,
ER – 84, oxidative stress – 83

Duc-2001 police brutality – 12, mad cow disease – 11, illegal aliens – 10,
Census Bureau – 10, Ben Johnson – 10, Clarence Thomas – 10,
investigation – 9, firefighters – 9, welfare reform – 8, crash – 8

KPTimes U.S. – 1,472, Donald Trump – 1,274, China – 1,122, terrorism –
525, baseball – 510, Russia – 474, elections – 435, Shinzo Abe –
386, football – 364, North Korea – 350

Table 3. A comparison of corpora content proximity, evaluated as in [24]. The value of
1 indicates identical corpora. The higher the score, the greater the difference between
corpora.
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Krapivin-A 1.00 46.24 51.63 141.92 214.31 295.17 267.85
Krapivin-T 46.24 1.00 61.44 125.14 190.75 277.01 238.56
Inspec 51.63 61.44 1.00 98.11 146.79 216.29 202.35
PubMed 141.92 125.14 98.11 1.00 68.72 194.62 121.91
NamedKeys 214.31 190.75 146.79 68.72 1.00 309.29 285.13
DUC-2001 295.17 277.01 216.29 194.62 309.29 1.00 162.96
KPTimes 267.85 238.56 202.35 121.91 285.13 162.96 1.00
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The ROUGE-1 score calculates the number of matching unigrams between
the model-generated text and the reference. The ROUGE-L score works in a sim-
ilar way but measures the longest common subsequence. To measure ROUGE-1
and ROUGE-L, the keyphrases for each text were combined into a string with
a comma as a separator.

BERTScore utilizes the pre-trained contextual embeddings from BERT-based
models and matches words in the source and generated texts using cosine sim-
ilarity. It has been shown that human judgment correlates with this metric on
sentence-level and system-level evaluation. To calculate BERTScore, we use con-
textual embeddings from RoBERTa-large [29], a modification of BERT that is
pre-trained using dynamic masking.

6 Results and Discussion

To answer RQ1 and RQ2, we fine-tuned BART on one corpus and applied it
to the other corpora in zero-shot settings. Then we fine-tuned BART on mixed
data. For this purpose, we evaluated four strategies:

1. Domaineq, fine-tuning the model on the texts of all corpora from one domain
(for example, CS domain includes Krapivin-a, Krapivin-T, and Inspec), then
testing on each corpus separately. In this strategy, we use an equal number of
texts for each corpus. For example, if the size of training sets for Krapivin-A,
Krapivin-T, and Inspec are 1,606, 1,605, and 1,400 respectively, we utilize
1,400 random texts from Krapivin-A and Krapivin-T and all texts from
Inspec. The overall size of training data is 4,200. The texts from different
corpora are mixed in random order.

2. Domainall, the strategy is similar to the previous one but we use all texts
from each corpus. In this case, the overall size of training data for the example
above is 4,611, i.e. 1,606+1,605+1,400.

3. Mixeq, fine-tuning the model on the texts of all corpora using an equal num-
ber of texts for each corpus, then testing it on each corpus separately. The
texts from different corpora are mixed in random order.

4. Mixall, the strategy is similar to Mixeq but we use all texts from each corpus.

Table 4 shows the performance of baselines on test sets. The best baseline
results are underlined. The performance of different methods varies depending
on the corpus. For example, KeyBART performs worse on the news domain since
this model was pre-trained on scientific texts.

The BART results are presented in Table 5. The results obtained for models
fine-tuned on data containing the target corpus are highlighted in blue. Training
data are italicized. The scores outperforming baselines are underlined. For mixed
training data, we indicate the overall number of training examples in brackets
and highlighted in bold the scores that exceed the results of the BART fine-
tuned only on the target corpus. The best results among all models (Tables 4
and 5) are marked with an asterisk (*). Table 6 in Appendix A shows a standard
deviation for three runs of BART.
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Table 4. Baseline results, %.

Target F1 R1 RL BS F1 R1 RL BS F1 R1 RL BS
KeyBART YAKE! TopicRank

Krapivin-A 8.58 23.34 19.81 88.26 8.14 20.75 17.58 86.35 6.89 17.68 14.86 87.94
Krapivin-T 5.42 16.61 14.67 87.18 7.09 16.43 14.13 86.14 5.89 15.17 12.48 87.44
Inspec 10.66 29.09 23.55 86.72 13.84 33.80 27.00 86.45 16.32 35.68 25.01 87.38
PubMed 5.70 13.41 12.27 85.56 13.35 20.00 17.28 85.43 11.11 18.61 15.41 86.83
NamedKeys 9.01 21.11 18.30 82.96 20.80 30.62* 22.06* 84.80 19.40 30.55 22.00 84.80
DUC-2001 5.57 11.54 10.37 86.12 13.58 26.93 22.16 85.63 20.88* 30.91* 23.59* 88.51*
KPTimes 4.50 8.52 7.87 83.95 10.05 18.92 16.18 84.83 10.40 14.44 12.74 86.24

The BART fine-tuned on a target corpus outperforms baselines in many
cases (Krapivin-A, Inspec, and KPTimes – all metrics; Krapivin-T – F1, R1,
and RL; PubMed – R1, RL, and BS; NamedKeys – RL and BS). For DUC-2001,
the results of BART are lower than the ones of unsupervised methods, which
is probably due to the smaller size of this corpus. The out-of-corpus results
are generally lower than the in-corpus ones. For example, when fine-tuning on
Inspec (CS domain), the performance in terms of F1 is reduced by 37% and
30% for Krapivin-A and Krapivin-T respectively (both – CS), by 51% and 56%
for PubMed and NamedKeys (BM), and by 34% and 78% for DUC-2001 and
KPTimes (news). The only exception is the model fine-tuned on Krapivin-A. For
Krapivin-T, its results are higher than the in-corpus scores. Thus, fine-tuning on
abstracts demonstrated higher scores than the fine-tuning on texts of the papers
for the same corpus. The lengths of abstracts and texts were limited to the first
256 tokens due to restrictions on the length of the input sequence and resource
limits.

Figure 2 illustrates the effect of adding training examples from other corpora
and domains in terms of F1. In our experiments, the effectiveness of the use of
additional data varies depending on the characteristics of the corpus. For DUC-
2001, which contains few training examples, the use of training examples from
other corpora and domains increased the results for all strategies. In contrast,
the highest result for KPTimes, which is the largest corpus in our experiments,
is obtained using the only target training set. The use of the Domaineq and
Mixeq strategies led to a sharp decrease in the size of the training set and the
number of targeted examples and negatively affected the model performance.
In general, the Mixeq strategy reduces the scores for all corpora except DUC-
2001 due to a strong reduction in the amount of training data from the target
corpus. Mixall generally improves the performance or at least does not lead to a
strong degradation of results4. This strategy showed the best results among all
models for Krapivin-A (in terms of F1 and BS), Krapivin-T (BS), Inspec (R1,
RL, and BS), PubMed (F1, R1, RL), and NamedKeys (RL, BS). Reducing the
size of the dataset naturally leads to a decrease in training time. For instance,
the training time is 53 minutes 59 seconds for Mixall (21,885 training examples)

4 This model is available at:
https://huggingface.co/beogradjanka/bart_finetuned_keyphrase_extraction
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Table 5. BART results, %.

Target
Training data

F1 R1 RL BS F1 R1 RL BS F1 R1 RL BS
Krapivin-A Krapivin-T Inspec

Krapivin-A 11.77 24.88* 21.46* 88.37 8.38 20.87 17.98 86.86 7.44 21.61 16.94 85.04
Krapivin-T 8.25 18.05 16.05 87.39 7.17 17.25 15.65 87.02 5.05 15.51 13.31 84.30
Inspec 9.85 24.01 19.37 86.63 6.66 19.27 15.97 85.76 20.18* 42.11 35.09 88.42
PubMed 7.97 15.67 13.67 85.74 4.44 11.25 10.12 83.76 6.61 16.98 14.01 83.62
NamedKeys 9.34 16.05 13.63 83.44 5.56 11.87 10.22 81.85 8.89 22.30 16.68 82.58
DUC-2001 6.01 12.84 11.85 86.00 3.19 8.40 7.80 84.34 7.81 17.56 15.48 85.27
KPTimes 3.84 7.17 6.63 83.64 2.46 5.35 4.99 82.30 6.67 11.71 10.25 83.52

PubMed NamedKeys DUC-2001
Krapivin-A 6.92 15.67 13.88 86.81 5.22 11.88 10.54 84.81 4.50 14.85 13.05 85.34
Krapivin-T 4.19 11.35 10.33 85.89 2.97 7.77 7.21 83.38 2.65 9.93 9.16 84.14
Inspec 6.08 16.33 13.92 85.46 4.48 11.04 9.51 82.97 4.69 16.22 14.07 83.77
PubMed 13.35 20.96 18.69 86.89* 10.62 17.92 15.43 84.55 6.00 16.14 14.26 85.17
NamedKeys 12.47 20.31 17.13 84.16 20.11 27.04 22.53 85.31 6.42 15.64 13.25 82.75
DUC-2001 5.23 11.64 10.81 85.79 6.27 12.65 11.32 84.61 11.78 24.14 20.65 87.45
KPTimes 6.38 9.89 9.06 84.46 8.94 12.24 10.97 84.22 2.80 8.47 7.78 83.44

KPTimes CSeq (4,200) CSall (4,611)
Krapivin-A 3.73 7.58 7.20 84.81 12.04 24.35 21.14 88.24 12.08 24.49 21.02 88.30
Krapivin-T 2.35 6.27 6.00 84.55 8.32 18.4116.3887.42 8.36* 18.54*16.50*87.48
Inspec 3.79 7.80 7.16 83.07 20.04 42.00 34.86 88.47 20.01 42.09 34.88 88.47
PubMed 8.22 10.77 10.02 85.02 8.11 16.66 14.45 85.57 8.20 16.84 14.55 85.68
NamedKeys 6.31 7.75 7.16 81.76 7.99 16.60 13.75 83.06 7.82 16.52 13.62 83.01
DUC-2001 6.86 14.64 13.15 86.12 4.54 11.36 10.58 85.76 5.16 12.09 11.30 85.87
KPTimes 30.97* 33.98* 28.92* 88.12* 7.11 10.81 9.79 84.51 7.43 10.98 10.05 84.58

BMeq (1,848) BMall (3,058) Newseq (432)
Krapivin-A 6.63 14.89 13.13 86.50 6.30 14.52 12.70 86.11 5.43 13.61 12.05 85.77
Krapivin-T 4.63 11.41 10.52 85.66 4.41 11.20 10.30 85.47 3.34 9.69 8.96 84.89
Inspec 6.11 15.26 13.10 85.10 5.78 14.64 12.36 84.64 5.91 13.74 12.09 83.70
PubMed 13.29 21.19 18.48 86.33 13.24 21.39 18.46 85.88 7.39 15.80 14.34 85.78
NamedKeys 18.44 25.38 21.21 85.10 20.6927.7723.1385.42 7.60 15.03 12.83 83.18
DUC-2001 6.37 13.88 12.48 85.80 6.48 13.53 12.32 85.53 13.76 24.64 21.15 87.83
KPTimes 9.43 12.50 11.26 84.83 8.85 12.47 11.21 84.60 4.76 9.34 8.60 84.56

Newsall (14,216) Mixeq (1,512) Mixall (21,885)
Krapivin-A 4.68 10.38 9.50 85.61 9.57 21.67 18.61 87.75 12.52* 24.82 21.41 88.41*
Krapivin-T 3.41 9.61 8.99 85.58 6.10 15.91 14.27 86.68 8.24 18.09 16.19 87.50*
Inspec 6.95 15.77 13.81 85.00 13.47 33.34 26.65 87.24 20.00 42.25*35.10*88.51*
PubMed 9.71 13.77 12.46 85.60 13.19 20.45 17.85 86.77 13.71*21.89*18.94* 86.25
NamedKeys 8.37 11.75 10.43 82.72 13.40 20.36 17.20 84.33 20.79 27.93 23.26*85.53*
DUC-2001 12.76 23.62 20.45 87.93 13.8824.1521.2987.96 13.31 25.63 22.60 88.02
KPTimes 30.53 33.78 28.79 88.10 5.56 9.96 9.18 84.80 30.22 33.49 28.54 88.07

and 3 minutes 59 seconds for Mixeq (1,512 training examples). In this case, the
training time decreases by about 20 times using the NVIDIA Tesla T4 GPU.

To answer RQ3, we fine-tuned BART on a smaller number of training ex-
amples and evaluated the performance by increasing the size of the training
data. Similarly to [33], we used the following few-shot transfer procedure. We
randomly sampled 50 texts from a target training set, fine-tuned the pre-trained
model on this subset, and then tested it on a target test set. Next, we increased
the sample size by 50 texts of the target training set and repeated the described
procedure, doing so up to 1,000 texts or the end of the training set. We com-
pared the results with the scores obtained using the full target corpus and the
out-of-domain corpora mixed in equal proportions. For instance, for Krapivin-
A, the mix of out-of-domain corpora includes PubMed, NamedKeys, DUC-2001,
and KPTimes. To answer RQ4, we first fine-tuned BART on a mixture of out-
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Fig. 2. Adding training examples from other corpora and domains.

of-domain corpora, and then fine-tuned the same model on the texts from the
target corpus using the above strategy. We evaluated two options for two-stage
fine-tuning. In the first case, we fine-tuned the model on out-of-domain data dur-
ing half of the epochs (three epochs out of six) and then continued fine-tuning
on the target data during the remaining three epochs. In the second case, we
doubled the number of epochs and fine-tuned the model within six epochs on
both out-of-domain and target data.

The results in terms of F1 are presented in Figure 3. The figure uses the
following conventions. Full target (6 ep) – fine-tuning on the full target corpus.
Not target_eq (6 ep) – fine-tuning on out-of-domain data. Target (6 ep) – fine-
tuning on a part of the target corpus. Not target_eq (3 ep) → Target (3 ep) –
fine-tuning on out-of-domain data for three epochs, then fine-tuning on a part
of a target corpus for three epochs. Not target_eq (6 ep) → Target (6 ep) –
fine-tuning on mixed out-of-domain data for six epochs, then fine-tuning on a
part of the target corpus for six epochs.

The models with two-stage fine-tuning outperform the ones fine-tuned only
on a target corpus on a small target sample size (≈ up to 300 texts). There-
fore, the use of out-of-domain corpora allows the use of fewer target data. For
some corpora (Krapivin-A, PubMed, and DUC-2001), the models fine-tuned in
a two-stage manner outperformed the ones fine-tuned on full target corpora. For
Krapivin-A, the F1 outperforming the full target score was obtained using 59%
of the target training set. For PubMed and DUC-2001, it took us 43% and 46%
respectively. For other corpora with a large full target size, we did not observe
the results exceeding the F1 on a full target corpus during this experiment.
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Fig. 3. Performance of BART with and without preliminary fine-tuning on out-of-
domain corpora using a varying size of training data.
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7 Conclusion

We explored the robustness of the abstractive text summarization models fine-
tuned for the task of keyphrase generation. Our experiments are based on BART,
a transformer-based denoising autoencoder for pre-training a seq2seq model. We
studied the cross-domain limitations of the BART fine-tuned for keyphrase gen-
eration across six corpora from three different domains. We also investigated the
impact of preliminary out-of-domain fine-tuning to improve the performance of
the models under conditions of a small amount of training data. We found that
preliminary fine-tuning on out-of-domain data improves the performance of the
model in few-shot settings and allows using fewer target data. Future research
will focus on transfer learning from a high-resource language, for example, En-
glish, to other languages and to Russian in particular.

We explored the robustness of the abstractive text summarization models
fine-tuned for the task of keyphrase generation. Our experiments are based on
BART, a transformer-based denoising autoencoder for pre-training a seq2seq
model. We studied the cross-domain limitations of the BART fine-tuned for
keyphrase generation across six corpora from three different domains. We also
investigated the impact of preliminary out-of-domain fine-tuning to improve the
performance of the models under conditions of a small amount of training data.

We found that preliminary fine-tuning on out-of-domain data improves the
performance of the keyphrase generation in few-shot settings and allows the use
of fewer target data. Our findings add to a series of results concerning the effec-
tiveness of a two-stage fine-tuning procedure where the transformer-based model
is first fine-tuned on the source domain dataset before fine-tuning with the tar-
get domain dataset. For instance, similar studies conducted for text classification
[34, 47] and named entity recognition [33, 40] have shown that the two-step train-
ing procedure can outperform the baseline models fine-tuned only on the target
corpus. Our future research will focus on transfer learning from a high-resource
language, for example, English, to other languages and to Russian in particular.



Cross-Domain Robustness of Transformer-based Keyphrase Generation 13

A Appendix

Table 6. The values of standard deviation for the BART results.

Target corpus F1 R1 RL BS F1 R1 RL BS F1 R1 RL BS
Krapivin-A Krapivin-T Inspec

Krapivin-A 0.36 0.34 0.25 0.05 0.27 0.54 0.43 0.05 0.40 0.32 0.48 0.11
Krapivin-T 0.09 0.16 0.23 0.08 0.18 0.42 0.35 0.05 0.17 0.16 0.03 0.11
Inspec 0.14 0.26 0.18 0.13 0.25 0.41 0.24 0.07 0.21 0.29 0.35 0.07
PubMed 0.27 0.10 0.27 0.08 0.30 0.52 0.38 0.17 0.32 0.30 0.25 0.09
NamedKeys 0.16 0.75 0.55 0.11 0.40 0.80 0.57 0.21 0.13 0.26 0.12 0.07
DUC-2001 0.92 1.36 1.21 0.17 0.26 0.47 0.35 0.08 4.15 7.49 6.35 0.84
KPTimes 0.17 0.23 0.21 0.08 0.25 0.50 0.46 0.16 3.43 5.21 4.29 0.98

PubMed NamedKeys DUC-2001
Krapivin-A 0.38 0.48 0.43 0.18 0.12 0.05 0.26 0.03 0.23 0.22 0.33 0.08
Krapivin-T 0.11 0.17 0.18 0.20 0.27 0.29 0.27 0.20 0.06 0.15 0.15 0.06
Inspec 0.31 0.37 0.20 0.22 0.21 0.06 0.16 0.11 0.48 0.88 0.56 0.22
PubMed 0.25 0.43 0.51 0.06 0.39 0.57 0.54 0.22 0.77 0.91 0.64 0.16
NamedKeys 0.32 0.55 0.40 0.07 0.84 1.03 0.77 0.23 0.15 0.16 0.04 0.05
DUC-2001 0.24 0.80 0.75 0.41 1.55 1.44 0.84 0.11 0.52 0.99 0.48 0.16
KPTimes 0.10 0.13 0.10 0.02 0.25 0.28 0.28 0.14 0.14 0.05 0.07 0.12

KPTimes CSeq CSall

Krapivin-A 0.18 0.28 0.25 0.14 0.27 0.80 0.60 0.06 0.04 0.14 0.13 0.05
Krapivin-T 0.21 0.40 0.35 0.10 0.28 0.43 0.31 0.02 0.22 0.12 0.24 0.11
Inspec 0.28 0.30 0.26 0.16 0.60 0.46 0.46 0.08 0.44 0.41 0.45 0.02
PubMed 0.59 0.71 0.70 0.17 0.48 1.00 0.99 0.24 0.27 0.26 0.45 0.09
NamedKeys 0.12 0.28 0.26 0.09 0.23 0.36 0.28 0.09 0.12 0.54 0.39 0.10
DUC-2001 0.96 0.65 0.70 0.26 0.65 1.32 0.96 0.07 0.43 1.33 0.98 0.28
KPTimes 0.22 0.19 0.21 0.04 0.56 0.70 0.54 0.12 0.25 0.09 0.02 0.05

BMeq BMall Newseq
Krapivin-A 0.27 0.30 0.28 0.18 0.14 0.31 0.32 0.13 0.28 0.63 0.55 0.13
Krapivin-T 0.11 0.06 0.23 0.22 0.08 0.16 0.28 0.17 0.08 0.26 0.28 0.09
Inspec 0.09 0.69 0.53 0.14 0.25 0.49 0.46 0.23 0.43 1.24 0.93 0.46
PubMed 0.83 0.38 0.41 0.10 0.48 0.06 0.33 0.10 0.43 0.92 0.75 0.07
NamedKeys 0.52 0.59 0.37 0.13 0.14 0.01 0.22 0.05 0.22 0.45 0.39 0.07
DUC-2001 0.69 2.30 2.30 0.52 0.07 0.62 0.52 0.17 0.41 0.51 1.42 0.19
KPTimes 0.28 0.48 0.35 0.01 0.29 0.11 0.15 0.06 0.05 0.11 0.14 0.05

Newsall Mixeq Mixall

Krapivin-A 0.56 0.90 0.72 0.25 0.50 0.51 0.68 0.09 0.50 0.52 0.23 0.07
Krapivin-T 0.12 0.58 0.47 0.19 0.36 0.34 0.28 0.21 0.02 0.57 0.42 0.10
Inspec 0.53 1.85 1.28 0.33 0.30 0.20 0.31 0.10 0.33 0.22 0.46 0.02
PubMed 0.15 0.22 0.22 0.10 0.84 0.20 0.11 0.02 0.62 0.35 0.42 0.07
NamedKeys 0.55 0.73 0.52 0.21 0.23 0.38 0.33 0.06 0.21 0.10 0.02 0.08
DUC-2001 0.74 0.27 0.42 0.19 0.54 0.31 0.20 0.08 0.24 0.73 1.09 0.09
KPTimes 0.12 0.13 0.17 0.01 0.16 0.13 0.11 0.01 0.28 0.28 0.17 0.02
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