
Smart Routes: a system for development and
comparison of algorithms for solving vehicle
routing problems with realistic constraints

Andrew Soroka1, German Mikhelson2, Alex Meshcheryakov3, Sergey
Gerasimov4

1 Moscow State University, Moscow, Russian Federation
andrew.soroka@student.msu.ru

2 Moscow State University, Moscow, Russian Federation
mikhelson.g@gmail.com

3 Space Research Institute of RAS, Moscow, Russian Federation
mesch@cosmos.ru

4 Moscow State University, Moscow, Russian Federation
gerasimov@cs.msu.ru

Abstract. The problem of route optimization with realistic constraints
is becoming extremely relevant in the face of global urban population
growth. While we are aware of approaches that theoretically provide
an exact optimal solution, their application becomes challenging as the
problem size increases because of exponential complexity. We investi-
gate the Capacitated Vehicle Routing Problem with Time Windows
(CVRPTW) and compare solutions obtaining by exact solver SCIP [2]
with heuristic algorithms such as LKH, 2-OPT, 3-OPT [10], the OR-
Tools framework [16], and the deep learning model JAMPR [7]. We
demonstrate that for problem of size 50 deep learning and classical
heuristic solutions became close to SCIP exact solution but requires less
time. Additionally for problems with size 100, SCIP exact methods ∼ 13
times slower that neural and classical heuristics with the same route cost
and on ∼ 50% worse for the first feasible solution on the same time. To
conduct experiments, we developed the Smart Routes platform for solv-
ing route optimization problems, which includes exact, heuristic, and
deep learning models, and facilitates convenient integration of custom
algorithms and datasets.

Keywords: CVRPTW · Vehicle Routing Platform · Heuristics · Exact
Solution · Reinforcement Learning

1 Introduction

The Vehicle Routing Problem (VRP) is a class of transport logistics problems
that aims to reduce the cost of transport resources, route expenses, and cargo
delivery time for a group of customers. In real-time scenarios, optimizing routes
while considering various constraints is an issue for most companies. As the



2 A. Soroka, G. Mikhelson et al.

number of cities and customers increases, it becomes necessary to develop a
solution that optimally utilizes allocated resources while maintaining service
quality. A shorter route enables faster delivery for customers and allows more
time to deliver goods to other customers.

In logistic problems, the VRP is often considered with various constraints
that need to be taken into account when constructing the routes. The most pop-
ular ones are constraints on customer time windows and service times (TW) and
vehicle capacities (C). Currently, there are significant challenges in developing
and modifying algorithms capable of solving problems with increasing dimen-
sions while striking a balance between solution quality and search time based
on the number of imposed constraints. Additionally, there is no unified plat-
form that allows users not only to solve problems using built-in algorithms and
experiment with them but also to add their own algorithms, data reading and
processing methods, etc., without changing the system’s architecture.

The contribution of this paper is the following:

– A platform for route problems optimization;

– A comparison of the effectiveness of common route optimization methods.

Our main focus is on the development of an innovative system called Smart
Routes and an in-depth comparative analysis of different methodologies in the
context of problematic constraints. We have studied heuristics, deep reinforce-
ment network and exact method (SCIP), taking into account the limitations
discussed in problems of different dimensions. Our study concludes with valu-
able information about the efficiency and quality of these solutions, which are
primarily assessed using two main metrics: the solution optimization time and
the final route cost determined by the objective function.

This paper reveals the architecture of our Smart Routes system designed to
optimize route problems. The system seamlessly integrates exact and heuristic
approaches, as well as deep reinforcement network methodologies, designed to
solve the vehicle routing problem (VRP) in its various forms and modifications.
So, it is useful for both experienced transport logistics experts and those less
experienced in the field, providing a one-stop platform for testing new ideas.
Consequently, this study not only delves into the ongoing search for the most
efficient algorithmic approach to solving the Vehicle Routing Problem with Time
Windows (CVRPTW) — a subcategory of VRP with popular and practical
limitations—but also introduces an innovative tool ready to solve this problem
comprehensively and efficient.

The article is structured as follows: Section 2 provides a review of recent
literature containing both classical and deep reinforcement approach to route
optimization. Sections 3 and 4 discuss the models considered and the developed
Smart Routes system, respectively. Section 5 describes the data on which the
experiments were conducted. In Section 6, we present the obtained results, and
Section 7 contains the conclusions drawn from the conducted study.



Smart Routes: CVRPTW solver platform 3

2 Related work

This section considers three groups of algorithms capable of solving the problem.
We note that although the problem has a rich history, there are many studies
comparing different approaches to solving the route optimization problem. Most
papers tend to suffer from a lack of exact approaches in comparison and either
limited size of the problems considered, sometimes lack of constraints. We try to
cover all the requirements in order to leave a complete picture of the applicability
of classical approaches.

2.1 Heuristic algorithms

The first group of algorithms is known as heuristic algorithms, which are
commonly used for such problems. Within this group, two distinct classes can
be identified: constructive heuristics and metaheuristics.

Constructive heuristics are algorithms that iteratively build feasible solu-
tions by adding components one at a time, such as the nearest neighbor heuristic,
insertion heuristic, and sweep heuristic. While they do not guarantee optimal
solutions, they can quickly generate high-quality solutions.

Metaheuristic algorithms are more general optimization methods that
explore the solution space using randomization and heuristics, such as simulated
annealing, genetic algorithms, and ant colony optimization. They may find bet-
ter solutions than constructive heuristics but often require more computational
resources.

The choice of these algorithms depends on the specific task and its applica-
tion. Constructive heuristics are commonly used in practice due to their speed
and efficiency in quickly obtaining high-quality solutions. On the other hand,
metaheuristic approaches are more flexible and can be applied to a wider range
of optimization problems, however with higher computational costs. Construc-
tive heuristics are faster to implement and can provide effective solutions for
certain problems.

2.2 Exact algorithms

The next group consists of exact algorithms, including linear programming
algorithms. These algorithms deal with problems in which the objective and con-
straint functions are linear. Linear programming problems have been extensively
studied, and their solution properties are well-known.

Linear programming problem (LP) is an optimization problem expressed in
standard form as follows:

max cTx | Ax ≤ b, x ≥ 0

Here, A ∈ Rm,n represents the technological matrix, b ∈ Rm is the resource
vector, c ∈ Rn is the price vector, and x ∈ Rn is the unknown vector. If several
or all variables in the vector x are integers, the problem is referred to as MILP
(Mixed Integer Linear Programming).

There are several algorithms that can solve MILP problems:



4 A. Soroka, G. Mikhelson et al.

1. Branch&Bound [12] is a widely used algorithm for solving MILP problems.
It divides the problem into subtasks called nodes and solves each node using
linear programming. The algorithm branches the node into subnodes by
adding constraints until an integer solution is found or infeasibility is proven.

2. Cutting Plane [5] iteratively adds valid linear inequalities, called cuts, to
exclude non-integer solutions in a problem formulation. Cuts are generated
by solving the LP -relaxation of the problem. The algorithm continues until
an integer solution is found or infeasibility is proven.

3. Branch&Cut [1] is a combination of the Branch&Bound and Cutting Plane
algorithms. It generates cuts to eliminate non-integer solutions and branches
nodes to create subnodes. This algorithm is typically more efficient than
using Branch&Bound or Cutting Plane separately.

In general, the choice of algorithm depends on the specific problem and the
requirements for solution quality and search time. Some MILP solvers, such as
CPLEX [6], SCIP [2], and Gurobi [9], implement several of these algorithms and
automatically select the most appropriate one for a given problem instance.

The main challenge with linear programming problems lies in their high di-
mensionality, often involving thousands of variables and constraints. The mem-
ory usage and solution time can increase exponentially as integer variables are
added. Therefore, heuristics have been developed to find approximate optimal
solutions in less time. For complex problems, heuristic approaches often provide
the best trade-off between solution quality and computational time.

2.3 Deep learning and reinforcement learning algorithms

The first deep learning model proposed for solving VRP was introduced by
Nazari et al. [15], who adapted the Pointer Network (PtrNet) from Vinyals et
al. [21] to work with CVRP. Nazari et al. [15] completely abandoned the orig-
inal RNN encoder part of the model and replaced it with a linear layer with
shared parameters. A more recent algorithm, AM (attention model) by Kool
et al. [11], replaced this architecture with an adapted transformer model using
attention [20]. A direct improvement to this model is the JAMPR approach pro-
posed by Falkner et al. [7], where the authors added additional fully connected
networks for the current path and truck positions. This addition allowed the
algorithm to successfully solve the CVRPTW problem. Chen and Tian [4] pro-
pose an RL-based approach that iteratively selects a region on the graph and
then selects and applies established local heuristics. This approach was further
enhanced by the destruction operator introduced by Lu et al. [14]. The latest at-
tempt to use deep learning for partitioning a set of points into subproblems and
solving them using a black-box solver was proposed by Li et al. [13]. The authors
presented two approaches: regression-based prediction of potential improvement
in the final cost and classification for the best subproblem. By reducing the
dimensionality and utilizing classical metaheuristic approaches in each subprob-
lem, the authors were able to achieve good results on high-dimensional problems
(over 1000 points). We have presented and explored in detail the applicability of



Smart Routes: CVRPTW solver platform 5

our deep reinforcement approach to solve the route optimization problem with
realistic constraints, showing how a fast suboptimal solution can be obtained
using learned neural heuristics in the latest article [18].

3 Algorithms and models

3.1 Classic approaches

While considering classical heuristic approaches, the decision was made to focus
on a group of algorithms known as local search. These algorithms provide a good
balance between solution quality and search efficiency in real-world problems and
also serve as fundamental components for metaheuristic and genetic algorithms
[8].

One of the best classical heuristic approaches that was chosen as the main
heuristic algorithm is the Lin-Kernighan heuristic [10]. This algorithm belongs to
the class of local optimization algorithms. It operates by performing exchanges or
moves, referred to as opt, that transform one route into another. Starting from an
initial feasible route, the algorithm recurrently performs exchanges that reduce
the length of the current route until a route is reached where no further exchange
can lead to improvement. This process can be repeated multiple times from
initially generated routes in a randomized manner. The algorithm assumes the
existence of an initial route partitioning, and then iteratively improves upon the
existing approximation. The improvement method involves exchanging vertices
within each sub-route individually.

SCIP [2], an open-source software, is a powerful optimization tool specif-
ically designed for solving mixed-integer programming problems [3, 19]. It is
well-suited for addressing complex optimization challenges encountered in logis-
tics, planning, and production scheduling. SCIP employs a range of methods and
algorithms, including Branch&Bound, Cutting Plane methods, Constraint Prop-
agation, Heuristics, Decomposition methods, and Integer Programming. These
techniques involve dividing the problem, adding constraints, utilizing inference,
applying rules of thumb, and solving integer programming problems to find op-
timal solutions. In summary, SCIP is a comprehensive optimization software
that utilizes diverse algorithms and methods to effectively and accurately solve
complex optimization problems.

In addition to SCIP, we selected OR-Tools (Operations Research Tools) [16],
a highly regarded framework renowned for its effectiveness in solving VRP (Ve-
hicle Routing Problem) challenges. OR-Tools is a versatile software designed
to tackle combinatorial optimization problems, equation and inequality solving,
and scheduling and routing problems. It offers a diverse array of optimization
methods and algorithms, including Linear Programming (LP) methods, Integer
Programming (IP) methods, Discrete Optimization methods, and Equation and
Inequality solving methods. Notably, OR-Tools excels in Routing and Scheduling,
providing algorithms for solving various routing problems such as the traveling
salesman problem and vehicle routing problem. These methods encompass both



6 A. Soroka, G. Mikhelson et al.

heuristic approaches and exact techniques like local search and metaheuristic
algorithms. With its flexibility and comprehensive range of methods, OR-Tools
proves to be a powerful tool for addressing optimization problems across domains
such as logistics, planning, and transportation.

3.2 Deep reinforcement learning models

We modified the JAMPR model [7] and use as our deep reinforcement approach
[18]. JAMPR model is a modification of the attention model (AM) [11] by Kool
et al., which utilizes an attention-based encoder-decoder architecture [20]. Both
models consider the route optimization problem as a sequential decision-making
problem, modeled as a Markov decision process and solved using reinforcement
learning. The problem solution is built incrementally by creating routes one node
at a time. The current solution, route, and unvisited nodes are interpreted as the
state, and the index of all unvisited nodes available for addition to the current
route is treated as the actions.

We added to the JAMPR approach trainable matrices (M+ block from 1,
separate for each constraint. We apply them to the result of the decoder, thus
modifying the policy(πθ). The final result of the network operation is a modified
policy of size (k*, n*). The optimization process consists of minimizing the cost
of the route, taking into account missed clients (soft setting):

Q =

m∑
j=1

n∑
i=1

cij · xij + λ

n∑
i=1

zi (1)

where clients i, i = 1, . . . , N , vehicles j, j = 1, . . . ,M , cij - cost of route for
j vehicle to i client and zi - binary parameter if we missed client.

Workflow of model: the encoder receives the features xi of each node i (co-
ordinates, cargo weights, time windows, etc.) and encodes them into a hidden
linear vector x̃i ∈ Rdemb of size demb. Then, the decoder model computes the
attention query for each x̃i with respect to a specific context C(t) at decoding
step t, in order to obtain scores for all nodes that can be added to the current
route. Here, the context incorporates implicit graph embedding of the problem
and additional problem-specific information such as the depot node index, the
last node added to the current route, and the remaining capacity. The obtained
scores are then either used in a greedy selection procedure, where the node with
the highest score is always chosen, or transformed using softmax into a dis-
tribution used for sampling. In general, the encoder-decoder model represents a
policy π(i(t+1)|C(t), x; θ) with trainable parameters θ. You can see full JAMPR∗

architecture from original paper [7] on figure 1.

4 System Smart Routes

4.1 Requirements

System should meet the following functional basic requirements:



Smart Routes: CVRPTW solver platform 7

Fig. 1. The JAMPR deep RL architecture modified to solve CPDPTW problems.
Added block M+ of learnable masks applied to output of decoder (policy πθ).

– Solving VRP with popular constraints. This involves solving VRP with
common and important constraints such as vehicle capacity and time win-
dows for delivery. As the system expands, new constraints will be added.

– Solving large-scale problems (∼1000 points). Solving large-scale VRP
presents challenges as the number of customers to be visited increases, mak-
ing it difficult for algorithms to find solutions and leading to longer search
times.

– Using real-world data. While our work compares algorithms using ar-
tificially generated data, the proposed system also includes a feature for
processing real-world data in a specific format.

– Conducting experiments with classical heuristic, exact, and deep
reinforcement network approaches. Problem of identification of the al-
gorithm type that is best suited for solving VRP remains relevant Therefore,
our system provides the opportunity to experiment with algorithms from dif-
ferent classes.

– Interactive usage of the system. To facilitate the use of built-in al-
gorithms, an intuitive interface is provided for adjusting parameters and
interacting with the system.

– Visual interpretation of solutions. Implementing algorithms can some-
times make it difficult to determine the correctness and optimality of solu-
tions. Visualizing the solution simplifies this verification process by providing
a representation of the displayed route.



8 A. Soroka, G. Mikhelson et al.

– Comparison of quality indicators.When comparing multiple algorithms,
it is useful to analyze the differences in the quality of the obtained solutions.
Graphs demonstrating the decrease or increase in route cost over a certain
period of time are particularly useful and convenient for conducting these
experiments.

4.2 Architecture

The system architecture is shown on Figure 2. Let us describe the system’s main
flow:

Fig. 2. Smart Routes System architecture. Three main blocks: 1) Dataset module is an
entry point for all data manipulations, also stores prepared datasets and allows loading
third-party data in a specified format; 2) Algorithm module responsible for train and
evaluate all available algorithms on prepaired datasets. There is possibility to add user
algorithm via special interfaces; 3) Solution module produces metrics, visualizes them
and offers web interface for communication with system.

The user installs the system, strictly following the documentation. Upon
launching it, the user is redirected to a web browser where a web page is dis-
played, prompting them to enter the necessary parameters.

1. Data and Parameters.

(a) The user selects the problem they intend to solve: CVRP (Capacitated
Vehicle Routing Problem), VRPTW (Vehicle Routing Problem with
Time Windows), CVRPTW (Capacitated Vehicle Routing Problem with
Time Windows);

(b) Name of the solving algorithm is chosen;
(c) A time limit is set for solving one task;
(d) The option to solve tasks sequentially or in parallel on the available

number of processors is chosen;
(e) A dataset is loaded in a specific format.



Smart Routes: CVRPTW solver platform 9

(f) Parameters for generating datasets are specified if needed: 1) µ — mean
value; 2) δ — variance; 3) capacitymin - minimum consumer demand
value; 4) capacitymax - maximum consumer demand value; 5) nsamples

— number of tasks; 6) ncustomer — number of customers in each task;
7) servicewindow — right time window for the depot; 8) serviceduration
— customer service time.

2. Dataset. The user-defined parameters and loaded data are passed to the
Data Generation/Preparation block, where the data is either artificially gen-
erated based on the user’s specified parameters or stored in variables. The
user datasets are then saved in a database or immediately passed to the
Data Conversion block, where the data is transformed by converting it to
the required types.

3. Algorithm. This block receives the preprocessed data and user-specified
parameters. The system determines which class of problems the selected
algorithm belongs to: classic heuristics, exact methods, neural methods.
As the result, for each submitted task, the user obtains the final route, i.e.,
a list of customers and its cost.

4. Solution. The results obtained from the previous block are passed to the
Metric Producer block, which generates an overall graph with metrics for
the user-selected algorithms, demonstrating the decrease in route cost within
the specified time limit. The results are also passed to the Visualizer block,
which visualizes the complete graphical route based on the obtained list of
customers.

Upon completion, the system displays two generated graphs, the final route cost,
and the list of customers in the order of their visitation on the initial web page.

4.3 Advantages

Our platform has a key feature that allows users to add their own algorithms
and models, giving it a significant advantage over other frameworks because:

1. Understanding the framework’s toolkit can take a lot of time. For example,
implementing the CVRPTWmodel using SCIP software required a consider-
able amount of time to understand how to correctly implement constraints,
define the model architecture, and preprocess input data.

2. Software packages such as OR-Tools, SCIP, Gurobi, CPLEX only allow
building models that act as exact methods. As the dimensions of the problem
instances increase, the solution search time also grows, which can become
critical.

In our system, users can integrate their algorithms by inheriting from base
classes and implementing the necessary methods. The built-in algorithms can be
applied to all types of approaches capable of solving VRP.

In addition our system also includes two convenient features. The first feature
is result visualization, which is essential for evaluating the performance and
suitability of the developed approach for the problem at hand. It automatically



10 A. Soroka, G. Mikhelson et al.

visualizes the final route within a specified time frame, allowing users to assess
the solution. The second important feature is the API, which allows users to
easily utilize the built-in approaches without integrating their own algorithms.
By launching the server, users can upload a dataset, select an approach, and
input additional parameters through a browser page. They will then receive the
overall route cost, the route itself, and its interpretation.

Thus, these platform features simplify the development, testing, and experi-
mentation of VRP solution approaches and demonstrate a significant advantage
over existing software.

4.4 Comparison of Smart Routes and Classical Frameworks

Currently, there are some frameworks that provide tools for solving the Vehicle
Routing Problem (VRP) with various constraints. The most popular ones include
OR-Tools, Gurobi, and SCIP.

The table below shows the types of algorithms supported by these frame-
works, denoted by + and - :

Algorithm Type Framework

SCIP Gurobi OR-Tools Smart Routes

Exact Approaches + + + +

Heuristic Approaches + + + +

Deep Reinforcement Approaches — — — +

Visualization of Results — — — +

Adding Custom Algorithms — — — +

It is important to note that OR-Tools and SCIP may not provide the same
level of performance and scalability as Gurobi when solving very large-scale
optimization problems.

Our proposed system differs from the aforementioned software in several as-
pects. In addition to covering all types of algorithms for solving the VRP, Smart
Routes allows for the integration of custom models, showcasing its flexibility
without compromising the overall architecture. We have implemented visualiza-
tion features to create performance charts and visualize the final routes. Fur-
thermore, during the system installation, OR-Tools and SCIP are automatically
installed, making it easier to conduct experiments comparing user models with
models implemented using the toolsets provided by these frameworks. There is
no need to develop models or algorithms for solving custom logistics problems,
as our system already offers built-in implementations. Moreover, our system
provides a user-friendly interface that simplifies the workflow and makes it a
convenient tool for users.



Smart Routes: CVRPTW solver platform 11

5 Data

The algorithms considered in this research aimed to solve the CVRPTW prob-
lem. The interest is to observe the behavior of these approaches when multiple
constraints are present simultaneously. In particular, the problem was solved
in the SOFT settings, which allow skipping points that cannot be visited. In
such cases, these points are excluded from the final route and incur a penalty,
represented by an increase in the missed nodes variable in the cost formula.

For the CVRPTW problem, suitable instances were selected from the well-
known reference set of Solomon based on the R201 statistics [17]. The truck
volumes were given as Q50 = 750 and Q100 = 1000 for problem sizes of 50 and
100, respectively. The total time horizon is defined as [a0, b0], where a0 = 0 for
all examples, and the right boundary b0 varies depending on the problem size,
specifically 1000 for 50 and 100 points. Additionally, the service duration hi for
each point is uniformly set to 10.

6 Experiments

Artificial datasets were generated for the experiments, consisting of 100 examples
with dimensions of 50 and 100 points. Each problem was assigned a specific time
limit for solving using the algorithms: 100 seconds for 50-point problems and 200
seconds for 100-point problems. Since exact methods involve a complete search of
possible solutions, they required 10 times more time for each problem to obtain
any solution, even if it is not optimal. Therefore, the exact method was given
1000 and 2000 seconds for 50-point and 100-point problems, respectively.

The experiments were conducted using the developed system Smart Routes,
which simplified the process of setting parameters when running different algo-
rithms and tasks. To save time during the experiments, the tasks were paral-
lelized on all available processors of the machine.

All experiments were performed on a server with NVIDIA Tesla A40 GPU
and Intel(R) Xeon(R) Gold 6226R CPU @ 2.90GHz with 16 virtual cores.

6.1 Main Results

The main experimental results are presented on the Figure 3 with each algo-
rithm represented as a point. Straight lines of different colors connect the points,
showing that the overall cost of routes increases as the problem dimensions in-
crease. The results obtained from SCIP are connected by an orange line, with
blue dashes indicating the potential geometric position of the SCIP results. The
x-axis represents the average solution time for a single task, while the y-axis
represents the average route cost for a single task.



12 A. Soroka, G. Mikhelson et al.

Fig. 3. Summary result of classical approaches, where each dot denotes the result
of a specific algorithm on a given problem size. The horizontal line indicates the time
required for the algorithm to achieve the best cost of the path, the vertical line indicates
the best cost achievable by the algorithm. The orange line shows the applicability limit
of exact approaches: on the left there is not enough time for the algorithm to provide
a solution, the zone on the right is an area favorable for choosing exact approaches.

Based on the obtained results, the following conclusions can be drawn:

1. Increasing the value of λ in the LKH algorithm (λ Opt) improves the quality
of solutions but increases the search time.

2. As the problem dimension and number of vehicles increase, SCIP solution
time significantly increases. Doubling the problem dimension led to a roughly
14-fold increase in SCIP solution time. In contrast, the JAMPR neural net-
work algorithm performs better than exact approaches in terms of solution
quality and search time for problem instances with a dimension of 100 points.
This suggests that exact methods have limited applicability for solving prob-
lems with dimensions of 100 points or more.

The following two chapters provide a more detailed description of the con-
ducted experiments on problem instances with dimensions of 50 and 100 points.

6.2 Results for 50-point instances

For the diagram with GAP metrics, we calculated the percentage deviation of
the algorithms at each point compared to the final best result achieved within
1000 seconds of optimization (SCIP). The overall metric represents the average
value among all solved problem instances.



Smart Routes: CVRPTW solver platform 13

Figure 4 presents the graphs showing the change in the quality of the final
route costs depending on the optimization time. On the plot, it can be observed
that for small 50-point instances, both classical heuristics and deep reinforcement
approaches quickly provide suboptimal solutions. The results of 2-Opt, 3-Opt,
LKH, OR-Tools, and JAMPR reach a plateau, but in the first few seconds of
optimization, the initial greedy solutions are provided by the classical heuristics,
with LKH gradually approaching the results of JAMPR and OR-Tools. However,
after about 10 seconds, SCIP solution becomes inferior to LKH, OR-Tools, and
JAMPR, but after 100 seconds, SCIP surpasses them. Although exact methods
provide the best solution, they require significantly more time to outperform
LKH, JAMPR, and OR-Tools in terms of solution quality, with the final gap
between the deep reinforcement model and SCIP being less than 5%.

Fig. 4. Performance of the considered models on the CVRPTW with 50 points. Solid
lines represent the results of approximate heuristic approaches. Dotted line represents
the results of SCIP - the best cost achieved with the longest time. Dashed line represents
JAMPR after 700 epochs of training - a fast suboptimal solution with subsequent
asymptotic approximation to the heuristic. The figure has two scales: total cost (on
the right) and the gap compared to the final best solution (on the left).

Thus, for 50-point instances, although exact approaches demonstrate the best
solution, they are outperformed by classical heuristics and deep reinforcement
approaches in terms of time by an order of magnitude. It is important to note
that neural networks and classical heuristic approaches can provide a suboptimal
solution to the CVRPTW within the first few seconds.



14 A. Soroka, G. Mikhelson et al.

6.3 Results for 100-point instances

Fig. 5. Performance of the considered models on the CVRPTW with 100 points. Solid
lines represent the results of approximate heuristic approaches. Dotted line represents
the results of SCIP. Dashed line represents JAMPR after 23 epochs of training - a
fast suboptimal solution with subsequent asymptotic approximation to the heuristic.
Despite the considerable optimization time, SCIP failed to achieve the accuracy of
JAMPR. The figure has two scales: total cost (on the right) and the gap compared to
the final best solution (on the left).

Figure 5 illustrates the change in route cost quality depending on the optimiza-
tion time and the chosen algorithm for 100-point instances. As with the 50-point
instances, we calculated the percentage cost for each algorithm compared to the
best result shown by SCIP within the maximum optimization time (in this case,
200 seconds for classical heuristics and deep reinforcement approach, and 2000
seconds for SCIP).

From the graph, it is evident that classical heuristic approaches provide a
faster suboptimal solution compared to other algorithms. However, they lag be-
hind JAMPR and OR-Tools in terms of solution quality. Although JAMPR
reaches a plateau around the 100th second, its initial greedy solution outper-
forms LKH with a GAP that is approximately 10% better, and the final result
surpasses LKH GAP by around 50%. As the problem dimensionality doubles,
there is a noticeable increasing GAP between the initial fast solutions in the
deep reinforcement model and the heuristics, as depicted in Figures 4 and 5.

Figure 5 also shows that SCIP required more than 900 seconds to obtain the
first solution, which is approximately 13 times longer than it took for JAMPR
and OR-Tools to achieve similar results when reaching a plateau. It is worth
noting that within the allocated time, SCIP was unable to propose an optimal
solution. Moreover, the first proposed solution is about 50% more costly than



Smart Routes: CVRPTW solver platform 15

the heuristic solutions provided by OR-Tools and JAMPR. This indicates that
as the problem dimensionality increases, exact approaches will become less and
less applicable for solving them due to exponentially increasing time.

Thus, in the case of 100-point instances, deep reinforcement approaches can
provide a fast suboptimal solution that outperforms classical heuristics in terms
of quality due to the longer training time and outperforms exact approaches in
terms of time required to find a solution.

7 Conclusions

The problem of route optimization with realistic constraints is becoming ex-
tremely relevant in the face of global urban population growth. While we are
aware of approaches that theoretically provide an exact optimal solution, their
application becomes challenging as the problem size increases because of ex-
ponential complexity. We investigate the Capacitated Vehicle Routing Problem
with Time Windows (CVRPTW) and compare solutions obtaining by exact
solver SCIP [2] with heuristic algorithms such as LKH, 2-OPT, 3-OPT [10], the
OR-Tools framework [16], and the deep learning model JAMPR [7].

All the metrics presented in the article were obtained using the Smart Routes
platform. This system has the capability to solve the route optimization problem
using various approaches, which facilitates research and result comparison.

Based on the experimental results, the following conclusions can be drawn:

– For problem instances with 50 points, both classical heuristic approaches
and reinforcement learning approaches demonstrate their effectiveness by
providing fast suboptimal solutions. The overall results are close to the re-
sults obtained by the exact method (SCIP) with GAP less than 5%. This
indicates that for problem instances with 50 points, classical heuristic ap-
proaches and neural network-based approaches can offer a good trade-off
between solution quality and search time.

– For problem instances with 100 points, exact methods required 13 more time
to find the initial solution. They were unable to provide an optimal solution
within the given time, resulting in up to 50% higher route costs during
optimization. Classical heuristic approaches provide fast suboptimal solu-
tions but start to lag behind more advanced methods such as JAMPR and
OR-Tools in terms of solution quality. These findings suggest the complete
infeasibility of exact methods for solving the vehicle routing optimization
problem with 100 (or more) points.

We believe that the developed platform is an important component for future
research in the field of route optimization with diverse constraints. Access to the
source code of the system can be obtained by communicating with the authors
of the article.



16 A. Soroka, G. Mikhelson et al.

References

1. Augerat, P., Naddef, D., Belenguer, J., Benavent, E., Corberan, A., Rinaldi, G.:
Computational results with a branch and cut code for the capacitated vehicle
routing problem (1995)

2. Bestuzheva, K., Besançon, M., Chen, W.K., Chmiela, A., Donkiewicz, T., van
Doornmalen, J., Eifler, L., Gaul, O., Gamrath, G., Gleixner, A., Gottwald, L.,
Graczyk, C., Halbig, K., Hoen, A., Hojny, C., van der Hulst, R., Koch, T.,
Lübbecke, M., Maher, S.J., Matter, F., Mühmer, E., Müller, B., Pfetsch, M.E., Re-
hfeldt, D., Schlein, S., Schlösser, F., Serrano, F., Shinano, Y., Sofranac, B., Turner,
M., Vigerske, S., Wegscheider, F., Wellner, P., Weninger, D., Witzig, J.: The SCIP
Optimization Suite 8.0. Technical report, Optimization Online (December 2021),
http://www.optimization-online.org/DBHTML/2021/12/8728.html

3. Çetinkaya, C., Karaoglan, I., Gökçen, H.: Two-stage vehicle routing problem with arc
time windows: A mixed integer programming formulation and a heuristic approach.
European Journal of Operational Research 230(3), 539–550 (2013)

4. Chen, X., Tian, Y.: Learning to perform local rewriting for combinatorial optimization.
Advances in Neural Information Processing Systems 32 (2019)

5. Cook W., R.J.L.: A parallel cutting-plane algorithm for the vehicle routing problem
with time windows (1999)

6. Cplex, I.I.: V12. 1: User’s manual for cplex. International Business Machines Corpora-
tion 46(53), 157 (2009)

7. Falkner, J.K., Schmidt-Thieme, L.: Learning to solve vehicle routing problems with
time windows through joint attention. arXiv preprint arXiv:2006.09100 (2020)

8. Groër, C., Golden, B., Wasil, E.: A library of local search heuristics for the vehicle
routing problem. Mathematical Programming Computation 2, 79–101 (2010)

9. Gurobi Optimization, LLC: Gurobi Optimizer Reference Manual (2023),
https://www.gurobi.com

10. Helsgaun, K.: An effective implementation of the lin–kernighan traveling salesman
heuristic. European journal of operational research 126(1), 106–130 (2000)

11. Kool, W., Van Hoof, H., Welling, M.: Attention, learn to solve routing problems! arXiv
preprint arXiv:1803.08475 (2018)

12. Laporte, G., Nobert, Y.: A branch and bound algorithm for the capacitated vehicle
routing problem. Operations-Research-Spektrum 5, 77–85 (1983)

13. Li, S., Yan, Z., Wu, C.: Learning to delegate for large-scale vehicle routing. Advances
in Neural Information Processing Systems 34 (2021)

14. Lu, H., Zhang, X., Yang, S.: A learning-based iterative method for solving vehicle
routing problems. In: International conference on learning representations (2019)

15. Nazari, M., Oroojlooy, A., Snyder, L., Takác, M.: Reinforcement learning for solving
the vehicle routing problem. Advances in neural information processing systems 31
(2018)

16. Perron, L.: Operations research and constraint programming at google. In: Interna-
tional Conference on Principles and Practice of Constraint Programming. pp. 2–2.
Springer (2011)

17. Solomon, M.M.: Algorithms for the vehicle routing and scheduling problems with time
window constraints. Operations research 35(2), 254–265 (1987)

18. Soroka, A., Meshcheryakov, A., Gerasimov, S.: Deep reinforcement learning for the
capacitated pickup and delivery problem with time windows. Pattern Recognition and
Image Analysis 33(2), 169–178 (2023)



Smart Routes: CVRPTW solver platform 17

19. Tahernejad, S., Ralphs, T.K., DeNegre, S.T.: A branch-and-cut algorithm for mixed
integer bilevel linear optimization problems and its implementation. Mathematical Pro-
gramming Computation 12, 529–568 (2020)

20. Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser,
 L., Polosukhin, I.: Attention is all you need. Advances in neural information processing
systems 30 (2017)

21. Vinyals, O., Fortunato, M., Jaitly, N.: Pointer networks. Advances in neural information
processing systems 28 (2015)


