
Analysis of the Metagraph Data Model in Terms
of Metagraph Operations and Category Theory

Stepan Vinnikov, Anatoly Nardid, and Yuriy Gapanyuk

Bauman Moscow State Technical University, Moscow, Russia
vinnikovss@student.bmstu.ru, nardid@bmstu.ru, gapyu@bmstu.ru

Abstract. A metagraph data model is a type of complex graph model
designed to describe complex subject areas. Category theory is a well-
known and well-researched mathematical apparatus that studies the prop-
erties of relations between various mathematical objects that do not de-
pend on the internal structure of objects. In this article, we make an
attempt to analyze the metagraph data model in terms of category the-
ory. Operations over the metagraph are introduced and the properties of
operations are considered in detail. The category of metagraphs “MetGr”
is proposed, which is a category in which the object class is the set of
metagraphs. Morphisms in such a category are based on a union opera-
tion. The proposed operations over the metagraph and the category of
metagraphs “MetGr” is a necessary basis for further development of a
rewriting system on metagraphs.

Keywords: Complex graph · Metagraph · Metavertex · Category theory
· Category · Morphism

1 Introduction

There are countless different systems of various degrees of complexity in the
world, the implementation and maintenance of which would be impossible or
extremely difficult without their preliminary modeling.

Modeling allows, on the one hand, to analyze various characteristics and
properties of the object of study without significant resource costs, and on the
other hand, to predict the behavior of the object with changes in both its pa-
rameters and structure.

One of the most commonly used tools for modeling systems and subject areas
is graph theory. This type of modeling is called graph structural. A special case
of such modeling is modeling with metagraph data model.

The metagraph model is a type of complex graph model designed to de-
scribe complex subject areas. The model was originally proposed by A. Bazu
and R. Blanning in the monograph [1] and subsequently received a number of
extensions independently proposed by different groups of researchers. In this ar-
ticle, the metagraph model is used in the form of annotated metagraph model
proposed in [2].

2 S. Vinnikov et al.

The structure of the absolute majority of existing systems and subject areas
is dynamic, that is, it changes over time – new components and connections are
added, old ones are changed or removed. This process of changing the system is
called its evolution.

The evolution of the system leads to the need for the evolution and models
of this system, since they must reflect its current state. This statement is true,
in particular, for the case when the model is described using metagraphs.

There are techniques that allow to work with graph transformations for-
mally. One such technique is graph rewriting [3]. This approach is based on
category theory – mathematical theory that studies the properties of relations
between various mathematical objects. The same approach can be developed for
metagraphs, but for this, first of all, it is necessary to consider operations over
metagraph and describe metagraph as a category.

Currently, knowledge-based systems often use a Semantic Web approach. In
particular, the RDF triple model and the OWL ontology description language
are used [4]. Descriptive logics [5] are used as a basis for the formal-logical
description of Semantic Web technologies. At the same time, paper [6] shows
the fundamental difference between the RDF data structure and the metagraph
model. Because of this, the results obtained in the logical study of Semantic Web
technologies cannot be directly applied to the metagraph model.

Thus, the main goal this article is the creation of a formal apparatus that can
later be used as a basis for development of a rewriting system on metagraphs. As
such a formalization, we propose a way of defining the operations over metagraph
and representing metagraph data model as a category.

The article is organized as follows. In section two, a formal definition of the
metagraph model is given, operations on the metagraph are introduced and their
properties are considered. In section three the category of metagraphs “MetGr”
is introduced and its properties are considered. In section four the example of
the application of the described category is given.

2 Operations Over Metagraphs

2.1 Definitions of the Metagraph Structures

According to [2] metagraphs and their internal structures are described as fol-
lows:

Definition 1. Metagraph is a set 𝑀𝐺 = {𝑀𝑉, 𝐸} where 𝑀𝐺 is a metagraph,
𝑀𝑉 is a set of metavertices of the metagraph, 𝐸 is a set of edges of the meta-
graph.

Definition 2. Empty metagraph is a metagraph that has both empty 𝑀𝑉 and
𝐸 sets. Empty metagraph is denoted as ∅ = {∅,∅}

Definition 3. Metavertex is a set 𝑀𝑉 = {𝑖𝑑, 𝑚𝑔} where 𝑀𝑉 is a metavertex,
𝑖𝑑 is the identifier of the metavertex, 𝑚𝑔 is a nested metagraph of the metavertex,
mg can be an empty metagraph.

Title Suppressed Due to Excessive Length 3

Definition 4. Edge of the metagraph is a set 𝐸 = {𝑖𝑑, (𝑖𝑑𝑏𝑒𝑔𝑖𝑛, 𝑖𝑑𝑒𝑛𝑑)} where
𝐸 is an edge, 𝑖𝑑 is the identifier of the edge, 𝑖𝑑𝑏𝑒𝑔𝑖𝑛 is the identifier of the initial
metavertex (the beginning of the edge), 𝑖𝑑𝑒𝑛𝑑 is the identifier of the terminal
metavertex (the ending of the edge).

2.2 Theory of Categories Definitions

In this section and beyond, the definitions and properties of the elements of
category theory are given, based both on the classical books of MacLane and
Awodey ([7,8]) and on the works of contemporary authors ([9,10,11]).

Definition 5. Category C consists of:

1. Class of objects 𝑂𝑏C. The fact that 𝑋 is an object of 𝐶 is written as 𝑋 ∈ C;
2. Sets ℎ𝑜𝑚 (𝑋,𝑌) of morphisms from 𝑋 to 𝑌 for each 𝑋 ∈ C, 𝑌 ∈ C.

The following axioms hold for any category:

1. For ∀𝑋 ∈ 𝑂𝑏C there exists an identity morphism 1𝑋 : 𝑋 → 𝑋
2. Morphisms can be composed: if there is 𝑓 : 𝑋 → 𝑌 ∈ and 𝑔 : 𝑌 → 𝑍 then

there exists their composition 𝑔 ∘ 𝑓 : 𝑋 → 𝑍.
3. Identity morphism is a neutral element for the composition operation: 𝑓 ∘

1𝑋 = 𝑓 = 1𝑌 ∘ 𝑓 where 𝑓 ∈ ℎ𝑜𝑚 (𝑋,𝑌).
4. Composition operation is associative: (ℎ ∘ 𝑔) ∘ 𝑓 = ℎ ∘ (𝑔 ∘ 𝑓) for arbitrary

𝑓, 𝑔, ℎ.

To apply the apparatus of category theory to the metagraph data model,
it is necessary to determine the category carrier class and morphisms in this
category. One of the possible categories is a category in which the class will be
the set of all possible metagraphs, and the morphisms will be based on the union
operation on the set of metagraphs. It is necessary to prove that sets with such
morphisms are indeed categories.

2.3 Definition of the Operations

Let’s describe operations and relations of metagraphs and metavertices:

1. Metagraph union:

𝑚𝑔1 ∪𝑚𝑔2 = 𝑚𝑔3 = {𝑀𝑉𝑚𝑔1 ∪𝑀𝑉𝑚𝑔2 , 𝐸𝑚𝑔1 ∪ 𝐸𝑚𝑔2}, (1)

for ∀𝑚𝑔1,𝑚𝑔2 ∈ 𝑀𝐺.
2. Metavertex union:

𝑚𝑣1 ∪𝑚𝑣2 =

[︃
{𝑖𝑑,𝑚𝑔𝑚𝑣1 ∪𝑚𝑔𝑚𝑣2

} 𝑖𝑓 𝑖𝑑𝑀𝑉1
= 𝑖𝑑𝑀𝑉2

{𝑚𝑣1,𝑚𝑣2} 𝑖𝑓 𝑖𝑑𝑚𝑣1
̸= 𝑖𝑑𝑚𝑣2

, (2)

for ∀𝑚𝑣1,𝑚𝑣2 ∈ 𝑀𝑉 .

4 S. Vinnikov et al.

3. Binary relation [12] ⊆:

𝑚𝑔1 ⊆ 𝑚𝑔2 ⇐⇒ (𝑚𝑔1 = ∅) ∨ (∀𝑚𝑣𝑖 ∈ 𝑀𝑉𝑚𝑔1 ⇒
∃!𝑚𝑣𝑗 ∈ 𝑀𝑉𝑚𝑔2 : 𝑚𝑣𝑖 ⊆ 𝑚𝑣𝑗 ∧ (𝐸𝑚𝑔1 ⊆ 𝐸𝑚𝑔1)),

(3)

for ∀𝑚𝑔1,𝑚𝑔2 ∈ 𝑀𝐺.

𝑚𝑣1 ⊆ 𝑚𝑣2 ⇐⇒ (𝑖𝑑𝑚𝑣1 = 𝑖𝑑𝑚𝑣2) ∧ (𝑚𝑔𝑚𝑣1 ⊆ 𝑚𝑔𝑚𝑣2), (4)

for ∀𝑚𝑣1,𝑚𝑣2 ∈ 𝑀𝑉 .

Let’s note the special properties of metagraphs and metavertices:

1. Empty metagraph is a neutral element of the union operation:

∅ ∪𝑚𝑔 = {∅ ∪𝑀𝑉𝑚𝑔,∅ ∪ 𝐸𝑚𝑔} = {𝑀𝑉𝑚𝑔, 𝐸𝑚𝑔} =

{𝑀𝑉𝑚𝑔 ∪∅, 𝐸𝑚𝑔 ∪∅} = 𝑚𝑔 ∪∅ = 𝑚𝑔

2. Each metavertex can be represented as a metagraph:

𝑚𝑣 = {{𝑚𝑣},∅} ∈ 𝑀𝐺,∀𝑚𝑣 ∈ 𝑀𝑉

3. The 𝑀𝑉 structure can be represented as a 𝑀𝑉 ′ structure:

𝑀𝑉 ′ = {𝑖𝑑, {𝑚𝑣}, {𝑒}},
and there is a bijection [12] between 𝑀𝑉 and 𝑀𝑉 ′:

𝑓 : 𝑀𝑉 ↔ 𝑀𝑉 ′

𝑓(𝑚𝑣) = {𝑖𝑑, {𝑚𝑣}𝑚𝑔𝑚𝑣 , {𝑒}𝑚𝑔𝑚𝑣} ∈ 𝑀𝑉 ′

𝑓−1(𝑚𝑣′) = {𝑖𝑑, {{𝑚𝑣}𝑚𝑣′ , {𝑒}𝑚𝑣′}} ∈ 𝑀𝑉

Note that the 𝑀𝐺 and 𝑀𝑉 structures can be expanded with one or several
additional structures, such as the string:

𝑀𝐺𝑠𝑡𝑟 = {𝑀𝑉, 𝐸, 𝑠},

𝑀𝑉𝑠𝑡𝑟 = {𝑖𝑑, 𝑚𝑔, 𝑠},
where 𝑠 is the string.

Then it will be necessary to describe ∪ operation and ⊆ relation for these
additional structures. For example, 𝑠𝑡𝑟1 ∪ 𝑠𝑡𝑟2 = 𝑐𝑜𝑛𝑐𝑎𝑡𝑖𝑛𝑎𝑡𝑒(𝑠𝑡𝑟1, 𝑠𝑡𝑟2), and
𝑠𝑡𝑟1 ⊆ 𝑠𝑡𝑟2 = 𝑠𝑡𝑟1 ≼ 𝑠𝑡𝑟2 where ≼ is a lexicographic order.

2.4 Property of the Union Operation

Operation ∪ is associative on 𝑀𝐺 and 𝑀𝑉 , if all the additional structures of
𝑀𝑉 and 𝑀𝐺 also have this property:

(𝑚𝑔1 ∪𝑚𝑔2) ∪𝑚𝑔3 = 𝑚𝑔1 ∪ (𝑚𝑔2 ∪𝑚𝑔3),∀𝑚𝑔1,𝑚𝑔2,𝑚𝑔3 ∈ 𝑀𝐺 (5)

(𝑚𝑣1 ∪𝑚𝑣2) ∪𝑚𝑣3 = 𝑚𝑣1 ∪ (𝑚𝑣2 ∪𝑚𝑣3),∀𝑚𝑣1,𝑚𝑣2,𝑚𝑣3 ∈ 𝑀𝑉 (6)

For the proof of the 5-6 properties, we introduce a special algebraic structure
“simple recursive structure” for which we will prove the above properties.

Title Suppressed Due to Excessive Length 5

2.5 Simple Recursive Structure Definition and Properties

One of the remarkable structural properties of metagraphs and metavertices is
their nesting property, and such nesting is recursive in nature.

The simplest algebraic structure with such property is a simple recursive
structure.

Let 𝐼𝐷 be a set of identifiers. 𝐼𝐷 can be any set, for example, the set of
natural numbers N.

Definition 6. Simple recursive structure 𝑆 is a set 𝑆 = {𝑖𝑑, {𝑠}} where 𝑖𝑑 ∈ 𝐼𝐷
is an identifier of the structure instance, {𝑠} is a nested set of the structure
instances 𝑠 ∈ 𝑆.

Let’s note the special properties of simple recursive structures:

1. Each element of a set of simple recursive structures has a unique identifier:

𝑠𝑖 ∈ {𝑠} ⇒ ∄𝑠𝑗 ∈ {𝑠} : 𝑠𝑗 ̸= 𝑠𝑖 ∧ 𝑖𝑑𝑠𝑗 = 𝑖𝑑𝑠𝑖

2. There is an empty set of simple recursive structures which is neutral to the
union operation and is a subset of any set:

∅ = {}

{𝑠} ∪∅ = ∅ ∪ {𝑠} = {𝑠}

∅ ⊆ ∀{𝑠}

3. If an instance of the simple recursive structure is an element of the set then
a set, containing only this element is a subset of this set:

𝑠1 ∈ {𝑠1, 𝑠2} ⇒ {𝑠1} ⊆ {𝑠1, 𝑠2} ⇒ 𝑠1 ∪ {𝑠1, 𝑠2} = {𝑠1, 𝑠2}

Now we will describe operations and relations of simple recursive structures:

1. Binary relation “=”:

𝑠1 = 𝑠2 ⇐⇒ (𝑖𝑑𝑠1 = 𝑖𝑑𝑠2) ∧ (|{𝑠}𝑠1 | = |{𝑠}𝑠2 |)∧
(({𝑠}𝑠1 = {𝑠}𝑠2 = ∅) ∨ (∀𝑠𝑖 ∈ {𝑠}𝑠1 ⇒ ∃!𝑠𝑗 ∈ {𝑠}𝑠2 : 𝑠𝑖 = 𝑠𝑗)),

(7)

for ∀𝑠1, 𝑠2 ∈ 𝑆.
2. Binary relation “⊆”:

𝑠1 ⊆ 𝑠2 ⇐⇒ (𝑖𝑑𝑠1 = 𝑖𝑑𝑠2)∧
(({𝑠}𝑠1 = ∅) ∨ (∀𝑠𝑖 ∈ {𝑠}𝑠1 ⇒ ∃!𝑠𝑗 ∈ {𝑠}𝑠2 : 𝑠𝑖 ⊆ 𝑠𝑗)),

(8)

for ∀𝑠1, 𝑠2 ∈ 𝑆.

Remark 1. By definition, a binary relation 𝑅 over sets 𝑋 and 𝑌 is a subset
𝑅 of the Cartesian product 𝑋×𝑌 . We will denote 𝑥𝑅𝑦 = 𝑇𝑟𝑢𝑒 if (𝑥, 𝑦) ∈ 𝑅.

6 S. Vinnikov et al.

Note the property 𝑠 ⊆ 𝑠,∀𝑠 ∈ 𝑆 without proof
3. Binary operation “∪”:

𝑠1 ∪ 𝑠2 =

[︃
{𝑠1, 𝑠2} 𝑖𝑓 𝑖𝑑𝑠1 ̸= 𝑖𝑑𝑠2

{𝑖𝑑, {𝑠}𝑠1 ∪ {𝑠}𝑠2} 𝑖𝑓 𝑖𝑑𝑠1 = 𝑖𝑑𝑠2
,∀𝑠1, 𝑠2 ∈ 𝑆, (9)

where {𝑠}𝑠1 ∪ {𝑠}𝑠2 = {𝑠𝑖 ∪ 𝑠𝑗},∀𝑠𝑖 ∈ {𝑠}𝑠1 ,∀𝑠𝑗 ∈ {𝑠}𝑠2 .
4. Function ℎ(𝑠) ∈ N∪{0}, that describes the nesting depth 𝑠 ∈ 𝑆 and defined

as follows:

ℎ(𝑠) =

[︃
0 if {𝑠}𝑠 = ∅
1 + ℎ({𝑠})

, (10)

∀𝑠 ∈ 𝑆, where ℎ({𝑠}) = 𝑚𝑎𝑥({ℎ(𝑠𝑖)}),∀𝑠𝑖 ∈ {𝑠}𝑠.

Before proving properties of the operations on 𝑆 we distinguish a special
predicate [13] class 𝑃𝑟(𝑆𝑃𝑟

) where 𝑆𝑃𝑟
= {𝑠1, 𝑠2, . . . } is a set of variables of the

𝑃𝑟 predicate.
Each predicate 𝑝 ∈ 𝑃𝑟 is defined as follows:

(∃𝑠𝑖, 𝑠𝑗 ∈ 𝑆𝑝 : 𝑖𝑑𝑠𝑖 ! = 𝑖𝑑𝑠𝑗) ⇒ 𝑝(𝑆𝑝) = 𝑇𝑟𝑢𝑒

(∃𝑠𝑖 ∈ 𝑆𝑝 : {𝑠}𝑠𝑖 = ∅) ⇒ 𝑝(𝑆𝑝) = 𝑇𝑟𝑢𝑒

(∄𝑠𝑖 ∈ 𝑆𝑝 : {𝑠}𝑠𝑖 = ∅) ⇒ 𝑝(𝑆𝑝) =
⋀︁

𝑝(𝑠1𝑖, 𝑠2𝑗 , . . .),

for ∀𝑠1𝑖 ∈ {𝑠}𝑠1 , 𝑠2𝑗 ∈ {𝑠}𝑠2 , . . . , where 𝑠1, 𝑠2, · · · ∈ 𝑆𝑝

The following lemma holds for this class of predicates

Lemma 1. 𝑝(𝑆𝑝) = 𝑇𝑟𝑢𝑒 for ∀𝑝 ∈ 𝑃𝑟, ∀𝑆𝑝

Proof. Take an arbitrary predicate 𝑝 ∈ 𝑃𝑟 and let 𝑃 (ℎ) be the statement 𝑝 =
𝑇𝑟𝑢𝑒, ∀𝑆𝑝. We induct on ℎ(𝑆𝑝).

1. Base case:
𝑃 (0) is true by the definition of 𝑝.
Let’s show that 𝑃 (ℎ) is true for ℎ(𝑆𝑝) = 1:
1) if (∃𝑠𝑖, 𝑠𝑗 ∈ 𝑆𝑝 : 𝑖𝑑𝑠𝑖 ! = 𝑖𝑑𝑠𝑗), then 𝑝(𝑆𝑝) = 𝑇𝑟𝑢𝑒.
2) if (∃𝑠𝑖 ∈ 𝑆𝑝 : {𝑠}𝑠𝑖 = ∅), then 𝑝(𝑆𝑝) = 𝑇𝑟𝑢𝑒.
3) if (∄𝑠𝑖 ∈ 𝑆𝑝 : {𝑠}𝑠𝑖 = ∅), then 𝑝(𝑆𝑝) =

⋀︀
𝑝(𝑠1𝑖, 𝑠2𝑗 , . . .), for ∀𝑠1𝑖 ∈

{𝑠}𝑠1 , 𝑠2𝑗 ∈ {𝑠}𝑠2 , . . . , where 𝑠1, 𝑠2, · · · ∈ 𝑆𝑝.

ℎ(𝑠𝑘𝑗) = 0,∀𝑠𝑘𝑗 , 𝑘 = 1, |𝑆𝑝|, 𝑗 = 1, |{𝑠}𝑠𝑘 |, hence ℎ(𝑠1𝑖, 𝑠2𝑗 , . . .) = 0,
hence 𝑝(𝑠1𝑖, 𝑠2𝑗 , . . .) = 𝑇𝑟𝑢𝑒 for ∀𝑠1𝑖 ∈ {𝑠}𝑠1 , 𝑠2𝑗 ∈ {𝑠}𝑠2 , . . . , where
𝑠1, 𝑠2, · · · ∈ 𝑆𝑝, hence

⋀︀
𝑝(𝑠1𝑖, 𝑠2𝑗 , . . .) = 𝑇𝑟𝑢𝑒, hence 𝑝(𝑆𝑝) = 𝑇𝑟𝑢𝑒.

2. Induction step:
Let 𝑝(𝑆𝑝) = 𝑇𝑟𝑢𝑒 for 𝑆𝑝 : ℎ(𝑆𝑝) = 𝑛 ∈ N.
then 𝑝(𝑆′

𝑝) = 𝑇𝑟𝑢𝑒 for 𝑆′
𝑝 : ℎ(𝑆′

𝑝) = 𝑛′, 𝑛′ ≤ 𝑛 by the definition pf 𝑝.
Let’s show that 𝑝(𝑆𝑝) = 𝑇𝑟𝑢𝑒 for 𝑆𝑝 : ℎ(𝑆𝑝) = 𝑛+ 1:

Title Suppressed Due to Excessive Length 7

1) if (∃𝑠𝑖, 𝑠𝑗 ∈ 𝑆𝑝 : 𝑖𝑑𝑠𝑖 ! = 𝑖𝑑𝑠𝑗), then 𝑝(𝑆𝑝) = 𝑇𝑟𝑢𝑒.
2) if (∃𝑠𝑖 ∈ 𝑆𝑝 : {𝑠}𝑠𝑖 = ∅), then 𝑝(𝑆𝑝) = 𝑇𝑟𝑢𝑒.
3) if (∄𝑠𝑖 ∈ 𝑆𝑝 : {𝑠}𝑠𝑖 = ∅), then 𝑝(𝑆𝑝) =

⋀︀
𝑝(𝑠1𝑖, 𝑠2𝑗 , . . .), for ∀𝑠1𝑖 ∈

{𝑠}𝑠1 , 𝑠2𝑗 ∈ {𝑠}𝑠2 , . . . , where 𝑠1, 𝑠2, · · · ∈ 𝑆𝑝.

ℎ(𝑠𝑘𝑗) ≤ 𝑛,∀𝑠𝑘𝑗 , 𝑘 = 1, |𝑆𝑝|, 𝑗 = 1, |{𝑠}𝑠𝑘 |, hence, ℎ(𝑠1𝑖, 𝑠2𝑗 , . . .) = 𝑛,
hence, 𝑝(𝑠1𝑖, 𝑠2𝑗 , . . .) = 𝑇𝑟𝑢𝑒 for ∀𝑠1𝑖 ∈ {𝑠}𝑠1 , 𝑠2𝑗 ∈ {𝑠}𝑠2 , . . . , where
𝑠1, 𝑠2, · · · ∈ 𝑆𝑝, hence,

⋀︀
𝑝(𝑠1𝑖, 𝑠2𝑗 , . . .) = 𝑇𝑟𝑢𝑒, hence, 𝑝(𝑆𝑝) = 𝑇𝑟𝑢𝑒.

Conclusion: Since both the base case and the induction step have been proved
as true for the arbitrary 𝑝 ∈ 𝑃𝑟, hence by mathematical induction the statement
𝑃 (ℎ) holds for every ℎ(𝑆𝑝), hence 𝑝(𝑆𝑝) = 𝑇𝑟𝑢𝑒 for ∀𝑝 ∈ 𝑃𝑟, ∀𝑆𝑝.

The following lemmas are valid for the 𝑆 structure:

Lemma 2. 𝑠1 ⊆ 𝑠1 ∪ 𝑠2,∀𝑠1, 𝑠2 ∈ 𝑆

Proof. 1. Consider the expression 𝑠1 ⊆ 𝑠1 ∪ 𝑠2:
If 𝑖𝑑𝑠1 ̸= 𝑖𝑑𝑠2 , then 𝑠1 ∪ 𝑠2 = {𝑠1; 𝑠2}. 𝑠1 ∈ {𝑠1; 𝑠2} = 𝑠1 ∪ 𝑠2 ⇒ 𝑠1 ⊆ 𝑠1 ∪ 𝑠2.
If 𝑖𝑑𝑠1 = 𝑖𝑑𝑠2 = 𝑖𝑑, then 𝑠1∪𝑠2 = {𝑖𝑑, {𝑠}𝑠1 ∪{𝑠}𝑠2}, hence 𝑠1 ⊆ 𝑠1∪𝑠2 ⇐⇒
(𝑖𝑑 = 𝑖𝑑) ∧ ({𝑠}𝑠1 = ∅ ∨ (∀𝑠𝑖 ∈ {𝑠}𝑠1 ⇒ ∃!𝑠𝑗 ∈ {𝑠}𝑠1∪𝑠2 : 𝑠𝑖 ⊆ 𝑠𝑗)).

2. Consider the expression (𝑖𝑑 = 𝑖𝑑) ∧ ({𝑠}𝑠1 = ∅ ∨ (∀𝑠𝑖 ∈ {𝑠}𝑠1 ⇒ ∃!𝑠𝑗 ∈
{𝑠}𝑠1∪𝑠2 : 𝑠𝑖 ⊆ 𝑠𝑗)):
𝑖𝑑 = 𝑖𝑑 for ∀𝑖𝑑 ∈ 𝐼𝐷.

If {𝑠}𝑠1 = ∅, then 𝑠1 ⊆ 𝑠1 ∪ 𝑠2
𝑑𝑒𝑓
= 𝑇𝑟𝑢𝑒.

3. Consider the case {𝑠}𝑠1 ̸= ∅:
First we prove that 𝑠𝑗 exists.
If {𝑠}𝑠2 = ∅, then {𝑠}𝑠1∪{𝑠}𝑠2 = {𝑠}𝑠1 ⇒ (∀𝑠𝑖 ∈ {𝑠}𝑠1 ⇒ ∃!𝑠𝑗 ∈ {𝑠}𝑠1∪𝑠2 =
𝑠𝑖 : 𝑠𝑖 ⊆ 𝑠𝑗). 𝑠𝑗 = 𝑠𝑖 ⇒ 𝑠𝑖 ⊆ 𝑠𝑖,∀𝑠𝑖 ∈ {𝑠}𝑠1 ⇒ 𝑠1 ⊆ 𝑠1 ∪ 𝑠2.
If {𝑠}𝑠2 ̸= ∅, then {𝑠}𝑠1 ∪ {𝑠}𝑠2 = {𝑠𝑘 ∪ 𝑠𝑙},∀𝑠𝑘 ∈ {𝑠}𝑠1 ,∀𝑠𝑙 ∈ {𝑠}𝑠2

𝑠𝑘 ∪ 𝑠𝑙
𝑑𝑒𝑓
=

[︃
{𝑠𝑘, 𝑠𝑙} 𝑖𝑓 𝑖𝑑𝑠𝑘 ̸= 𝑖𝑑𝑠𝑙
{𝑖𝑑, {𝑠}𝑠𝑘 ∪ {𝑠}𝑠𝑙} 𝑖𝑓 𝑖𝑑𝑠1 = 𝑖𝑑𝑠2

⇒

⇒ ∀𝑠𝑖 ∈ {𝑠}𝑠1∃!𝑠𝑗 ∈ {𝑠}𝑠1∪𝑠2 : 𝑖𝑑𝑠𝑗 = 𝑖𝑑𝑠𝑖
4. Consider the expression 𝑠𝑖 ⊆ 𝑠𝑗 where 𝑠𝑖 ∈ {𝑠}𝑠1 , 𝑠𝑗 ∈ {𝑠}𝑠1∪𝑠2 :

𝑠𝑗 = 𝑠𝑖 ∪ 𝑠𝑙,∀𝑠𝑖 ∈ {𝑠}𝑠1 ,∀𝑠𝑙 ∈ {𝑠}𝑠2 , then 𝑠𝑖 ⊆ 𝑠𝑗 ⇐⇒ 𝑠𝑖 ⊆ 𝑠𝑖 ∪ 𝑠𝑙,∀𝑠𝑖 ∈
{𝑠}𝑠1 ,∀𝑠𝑙 ∈ {𝑠}𝑠2 , which is equivalent to the formulation of the lemma.
So,

𝑠1 ⊆ 𝑠1 ∪ 𝑠2 ⇐⇒

⎡⎢⎣𝑖𝑑𝑠1 ̸= 𝑖𝑑𝑠2

{𝑠}𝑠1 = ∅ ∨ {𝑠}𝑠2 = ∅
𝑠𝑖 ⊆ 𝑠𝑖 ∪ 𝑠𝑙,∀𝑠𝑖 ∈ {𝑠}𝑠1 ,∀𝑠𝑙 ∈ {𝑠}𝑠2

⇒

⇒ (𝑠1 ⊆ 𝑠1 ∪ 𝑠2) ∈ 𝑃𝑟
𝐿𝑒𝑚𝑚𝑎1
======⇒ 𝑠1 ⊆ 𝑠1 ∪ 𝑠2,∀𝑠1, 𝑠2 ∈ 𝑆

Lemma 3. Operation ∪ is associative on 𝑆.

(𝑠1 ∪ 𝑠2) ∪ 𝑠3 = 𝑠1 ∪ (𝑠2 ∪ 𝑠3),∀𝑠1, 𝑠2, 𝑠3 ∈ 𝑆 (11)

8 S. Vinnikov et al.

Proof. Let 𝑖𝑑1, 𝑖𝑑2, 𝑖𝑑3 ∈ 𝐼𝐷. We will write down in the table all possible com-
binations of indexes, while if they match, we will denote them by 𝑖𝑑:

№ 𝑠1 𝑠2 𝑠3
1 {𝑖𝑑1, {𝑠}} {𝑖𝑑2, {𝑠}} {𝑖𝑑3, {𝑠}}
2 {𝑖𝑑, {𝑠}} {𝑖𝑑, {𝑠}} {𝑖𝑑3, {𝑠}}
3 {𝑖𝑑, {𝑠}} {𝑖𝑑2, {𝑠}} {𝑖𝑑, {𝑠}}
4 {𝑖𝑑1, {𝑠}} {𝑖𝑑, {𝑠}} {𝑖𝑑, {𝑠}}
5 {𝑖𝑑, {𝑠}} {𝑖𝑑, {𝑠}} {𝑖𝑑, {𝑠}}

Consider the expression (11) for all of the five cases:

1. (𝑠1 ∪ 𝑠2) ∪ 𝑠3 = {𝑠1, 𝑠2} ∪ 𝑠3 = {𝑠1, 𝑠2, 𝑠3} = 𝑠1 ∪ {𝑠2, 𝑠3} = 𝑠1 ∪ (𝑠2 ∪ 𝑠3)

2. (𝑠1 ∪ 𝑠2) ∪ 𝑠3 = {𝑠1 ∪ 𝑠2} ∪ 𝑠3 = {𝑠1 ∪ 𝑠2, 𝑠3}
Lemma 2

= {𝑠1 ∪ 𝑠2, 𝑠1, 𝑠3} =
𝑠1 ∪ {𝑠2, 𝑠3} = 𝑠1 ∪ (𝑠2 ∪ 𝑠3)

3. (𝑠1 ∪ 𝑠2) ∪ 𝑠3 = {𝑠1, 𝑠2} ∪ 𝑠3 = {𝑠1 ∪ 𝑠3, 𝑠2}
Lemma 2

= {𝑠1 ∪ 𝑠3, 𝑠1, 𝑠2} =
𝑠1 ∪ {𝑠3, 𝑠2} = 𝑠1 ∪ (𝑠2 ∪ 𝑠3)

4. (𝑠1 ∪ 𝑠2)∪ 𝑠3 = {𝑠1, 𝑠2} ∪ 𝑠3 = {𝑠1, 𝑠2 ∪ 𝑠3} = 𝑠1 ∪ {𝑠2 ∪ 𝑠3} = 𝑠1 ∪ (𝑠2 ∪ 𝑠3)
5. (𝑠1∪𝑠2)∪𝑠3 = {𝑖𝑑, ({𝑠}𝑠1∪{𝑠}𝑠2)∪{𝑠}𝑠3}. On the other hand 𝑠1∪(𝑠2∪𝑠3) =

{𝑖𝑑, {𝑠}𝑠1 ∪ ({𝑠}𝑠2 ∪ {𝑠}𝑠3)}.
In this case (𝑠1 ∪ 𝑠2) ∪ 𝑠3 = 𝑠1 ∪ (𝑠2 ∪ 𝑠3) ⇐⇒ ({𝑠}𝑠1 ∪ {𝑠}𝑠2) ∪ {𝑠}𝑠3 =
{𝑠}𝑠1 ∪ ({𝑠}𝑠2 ∪ {𝑠}𝑠3).

Consider the expression ({𝑠}𝑠1 ∪ {𝑠}𝑠2) ∪ {𝑠}𝑠3 = {𝑠}𝑠1 ∪ ({𝑠}𝑠2 ∪ {𝑠}𝑠3) for
various {𝑠}𝑠1 , {𝑠}𝑠2 , {𝑠}𝑠3 :

1. If {𝑠}𝑠1 = ∅, then ({𝑠}𝑠1 ∪ {𝑠}𝑠2) ∪ {𝑠}𝑠3 = (∅ ∪ {𝑠}𝑠2) ∪ {𝑠}𝑠3 = {𝑠}𝑠2 ∪
{𝑠}𝑠3 = ∅ ∪ ({𝑠}𝑠2 ∪ {𝑠}𝑠3) = {𝑠}𝑠1 ∪ ({𝑠}𝑠2 ∪ {𝑠}𝑠3).

2. If {𝑠}𝑠2 = ∅, then ({𝑠}𝑠1 ∪ {𝑠}𝑠2) ∪ {𝑠}𝑠3 = ({𝑠}𝑠1 ∪ ∅) ∪ {𝑠}𝑠3 = {𝑠}𝑠1 ∪
{𝑠}𝑠3 = {𝑠}𝑠1 ∪ (∅ ∪ {𝑠}𝑠3) = {𝑠}𝑠1 ∪ ({𝑠}𝑠2 ∪ {𝑠}𝑠3).

3. If {𝑠}𝑠3 = ∅, then ({𝑠}𝑠1 ∪ {𝑠}𝑠2) ∪ {𝑠}𝑠3 = ({𝑠}𝑠1 ∪ ∪{𝑠}𝑠2) ∪∅ = {𝑠}𝑠1 ∪
{𝑠}𝑠2 = {𝑠}𝑠1 ∪ ({𝑠}𝑠2 ∪∅) = {𝑠}𝑠1 ∪ ({𝑠}𝑠2 ∪ {𝑠}𝑠3).

4. If {𝑠}𝑠1 ̸= ∅ ∧ {𝑠}𝑠2 ̸= ∅ ∧ {𝑠}𝑠3 ̸= ∅, then:
1) ({𝑠}𝑠1 ∪ {𝑠}𝑠2)∪ {𝑠}𝑠3 = {{𝑠𝑖 ∪ 𝑠𝑗} ∪ 𝑠𝑘},∀𝑠𝑖 ∈ {𝑠}𝑠1 ,∀𝑠𝑗 ∈ {𝑠}𝑠2 ,∀𝑠𝑘 ∈

{𝑠}𝑠3
2) {𝑠}𝑠1 ∪ ({𝑠}𝑠2 ∪ {𝑠}𝑠3) = {𝑠𝑖 ∪ {𝑠𝑗 ∪ 𝑠𝑘}},∀𝑠𝑖 ∈ {𝑠}𝑠1 ,∀𝑠𝑗 ∈ {𝑠}𝑠2 ,∀𝑠𝑘 ∈

{𝑠}𝑠3
Then the expression (11) is true if

{{𝑠𝑖 ∪ 𝑠𝑗} ∪ 𝑠𝑘} = {𝑠𝑖 ∪ {𝑠𝑗 ∪ 𝑠𝑘}},∀𝑠𝑖 ∈ {𝑠}𝑠1 ,∀𝑠𝑗 ∈ {𝑠}𝑠2 ,∀𝑠𝑘 ∈ {𝑠}𝑠3
(12)

We can fix 𝑠𝑖, 𝑠𝑗 , 𝑠𝑘 because if (12) is true for the fixed arbitrary combination,
then it will be true for all other combinations 𝑠𝑙, 𝑠𝑚, 𝑠𝑛.
Then (12) can be written as:

((𝑠𝑖 ∪ 𝑠𝑗) ∪ 𝑠𝑘) = (𝑠𝑖 ∪ (𝑠𝑗 ∪ 𝑠𝑘)),∀𝑠𝑖 ∈ {𝑠}𝑠1 ,∀𝑠𝑗 ∈ {𝑠}𝑠2 ,∀𝑠𝑘 ∈ {𝑠}𝑠3 ,

which is equivalent to the formulation of the lemma.

Title Suppressed Due to Excessive Length 9

So, (𝑠1 ∪ 𝑠2) ∪ 𝑠3 = 𝑠1 ∪ (𝑠2 ∪ 𝑠3), if:⎡⎢⎣𝑖𝑑𝑠1 ̸= 𝑖𝑑𝑠2 ∨ 𝑖𝑑𝑠1 ̸= 𝑖𝑑𝑠3 ∨ 𝑖𝑑𝑠2 ̸= 𝑖𝑑𝑠3

{𝑠}.𝑠1 = ∅ ∨ {𝑠}.𝑠2 = ∅ ∨ {𝑠}.𝑠3 = ∅
((𝑠𝑖 ∪ 𝑠𝑗) ∪ 𝑠𝑘) = (𝑠𝑖 ∪ (𝑠𝑗 ∪ 𝑠𝑘))

⇒

⇒ ((𝑠1 ∪ 𝑠2) ∪ 𝑠3 = 𝑠1 ∪ (𝑠2 ∪ 𝑠3)) ∈ 𝑃𝑟
Lemma 1
======⇒ (𝑠1 ∪ 𝑠2) ∪ 𝑠3 = 𝑠1 ∪ (𝑠2 ∪ 𝑠3),

for ∀𝑠1, 𝑠2, 𝑠3 ∈ 𝑆

Remark 2. If we expand 𝑆 structure with an additional structure 𝑝 ∈ P for which
a binary relation ⊆ and binary operation ∪ : P × P → P are defined, and the
statement 𝑝1 ⊆ 𝑝1 ∪ 𝑝2,∀𝑝1, 𝑝2 ∈ P is true, then lemma №2 will still hold true
for 𝑆 because:

𝑠1 ∪ 𝑠2 = {𝑖𝑑, 𝑝𝑠1 ∪ 𝑝𝑠2 , {𝑠}𝑠1 ∪ {𝑠}𝑠2}

Similarly, if lemmas №2,3 hold true for ∀𝑝1, 𝑝2 ∈ P, then they will hold for
𝑆.

The same conclusions can be done for 𝑆 expanded with several additional
structures 𝑝𝑖 ∈ P𝑖.

The 𝑀𝑉 ′ structure corresponds to the 𝑆 structure expanded with a set of
edges. Set of edges is the usual set, hence, lemmas №2,3 hold true for 𝑀𝑉 ′.
Since 𝑀𝑉 ↔ 𝑀𝑉 ′, lemmas №2,3 hold true for 𝑀𝑉 . Each metagraph can be
represented as a metavertex with the same 𝑖𝑑 = 𝑖𝑑𝑚𝑔, hence each metagraph
holds all the properties of the 𝑆 structure.

It follows from this that the statements 5 - 6 are proven for ∀𝑚𝑔 ∈ 𝑀𝐺 and
∀𝑚𝑣 ∈ 𝑀𝑉 .

3 Category of Metagraphs

Having proved the associativity property of the union operation of metagraphs,
we can describe a category of metagraphs.

Definition 7. Category of metagraphs 𝑀𝑒𝑡𝐺𝑟∪ is a category in which class of
objects is a set of metagraphs 𝑀𝐺 and morphisms are expressions of the form
∪𝑚𝑔, that perform a union operation of the argument 𝑚𝑔1 (the beginning of the
arrow) with 𝑚𝑔 and get metagraph 𝑚𝑔2 (the end of the arrow) as a result:

𝑚𝑔1
∪𝑚𝑔−−−→ 𝑚𝑔2 (13)

Proof of the category axioms for 𝑀𝑒𝑡𝐺𝑟∪:

10 S. Vinnikov et al.

1. Identity morphism: 𝑖𝑑𝑀𝑒𝑡𝐺𝑟∪ = ∪∅.
Let 𝑓 = ∪𝑚𝑔𝑓 , then:

𝑓 ∘ 𝑖𝑑 = ∪∅ ∪𝑚𝑔𝑓 = ∪𝑚𝑔𝑓 = 𝑓

𝑖𝑑 ∘ 𝑓 = ∪𝑚𝑔𝑓 ∪∅ = ∪𝑚𝑔𝑓 = 𝑓

2. Composition of morphisms:
Let 𝑓 = ∪𝑚𝑔𝑓 , 𝑔 = ∪𝑚𝑔𝑔, then:

𝑔 ∘ 𝑓 = ∪𝑚𝑔𝑓 ∪𝑚𝑔𝑔 = ∪{𝑀𝑉𝑚𝑔𝑓 ∪𝑀𝑉𝑚𝑔𝑔 , 𝐸𝑚𝑔𝑓 ∪ 𝐸𝑚𝑔𝑔}

3. Associativity of the composition operation:
Let 𝑓 = ∪𝑚𝑔𝑓 , 𝑔 = ∪𝑚𝑔𝑔, ℎ = ∪𝑚𝑔ℎ, then:

(ℎ ∘ 𝑔) ∘ 𝑓 = ∪𝑚𝑔𝑓 ∪ (𝑚𝑔𝑔 ∪𝑚𝑔ℎ) =

∪𝑚𝑔𝑓 ∪ {𝑀𝑉𝑚𝑔𝑔 ∪𝑀𝑉𝑚𝑔ℎ , 𝐸𝑚𝑔𝑔 ∪ 𝐸𝑚𝑔ℎ} =

∪{𝑀𝑉𝑚𝑔𝑓 ∪ (𝑀𝑉𝑚𝑔𝑔 ∪𝑀𝑉𝑚𝑔ℎ), 𝐸𝑚𝑔𝑓 ∪ (𝐸𝑚𝑔𝑔 ∪ 𝐸𝑚𝑔ℎ)} =

∪{(𝑀𝑉𝑚𝑔𝑓 ∪𝑀𝑉𝑚𝑔𝑔) ∪𝑀𝑉𝑚𝑔ℎ , (𝐸𝑚𝑔𝑓 ∪ 𝐸𝑚𝑔𝑔) ∪ 𝐸𝑚𝑔ℎ} =

∪{𝑀𝑉𝑚𝑔𝑓 ∪𝑀𝑉𝑚𝑔𝑔 , 𝐸𝑚𝑔𝑓 ∪ 𝐸𝑚𝑔𝑔} ∪𝑚𝑔ℎ =

∪(𝑚𝑔𝑓 ∪𝑚𝑔𝑔) ∪𝑚𝑔ℎ = ℎ ∘ (𝑔 ∘ 𝑓)

Category axioms are proven, hence 𝑀𝑒𝑡𝐺𝑟∪ is a category.

4 Example

Let ’s give an example of using operations over metagraphs.
Let’s say there are two departments in some corporation called ”Corp”. The

first department is called ”Dep1”, and Mike and Anna work in it, Anna is Mike’s
supervisor. The second department is called ”Dep2”, John and Nick work in it.
John came to work recently, so he is not Nick’s supervisor yet.

After the new year, the following changes are planned in ”Corp”:

1. A manager Harry comes to the corporation, and he will manage the ”Dep1”
and ”Dep2” departments.

2. A new employee Alex comes to the ”Dep1”, and Anna will be his supervisor.
3. John becomes Nick’s supervisor.

Let’s simulate this situation using a 𝑀𝑒𝑡𝐺𝑟∪ category. Let the metavertices
denote departments, the vertices denote employees, and the edges denote the
subordination relationship.

Metagraph in the figure 1 corresponds to the initial state of the ”Corp”.
Figure 2 corresponds to the moment at which Harry comes to the company. In
figure 3 Harry starts managing ”Dep1” and ”Dep2” departments. Alex comes to
”Dep1” in figure 4. Anna becomes Alex’s supervisor in figure 5. John becomes
Nick’s supervisor in figure 6.

Title Suppressed Due to Excessive Length 11

Fig. 1. initial state of the ”Corp”

Fig. 2. Harry comes to the company

Fig. 3. Harry starts managing ”Dep1” and ”Dep2” departments

12 S. Vinnikov et al.

Fig. 4. Alex comes to ”Dep1”

Fig. 5. Anna becomes Alex’s supervisor

Fig. 6. John becomes Nick’s supervisor

The right metagraph in figure 6 corresponds to the final state of the ”Corp”
after the new year. Note that we could achieve the same state with just one
morphism using the composition operation in 𝑀𝑒𝑡𝐺𝑟∪, as shown in figure 7.

Title Suppressed Due to Excessive Length 13

Fig. 7. transition from the initial state to the final one through a single morphism

Thus, using a metagraph data model and the 𝑀𝑒𝑡𝐺𝑟∪ category, we are able
to simulate real-life situations.

5 Conclusion

The metagraph data model is a modern tool for modeling systems of varying
degrees of complexity. In addition to various data about the characteristics of
the described system, metagraphs store information about the hierarchy of this
system, which advantageously distinguishes it from other modeling methods.

The proof of the properties of the simple recursive structure allowed us to
prove that a metagraph can be viewed as a category.

The obtained research results are applicable for the further development of
the rewriting system on metagraphs. The rewriting system can use either meta-
graph operations or a categorical approach or their hybridization. The effective-
ness of each of these approaches is the subject of further research.

References

1. Basu, A., Blanning, R.W.: Metagraphs and Their Applications. Springer (2007)

2. Gapanyuk, Yu.: The Development of the Metagraph Data and Knowledge Model.
In: Russian Advances in Fuzzy Systems and Soft Computing: Selected Contributions
to the 10th International Conference on “Integrated Models and Soft Computing in
Artificial Intelligence (IMSC-2021)”, pp. 1–7. Kolomna, Russia, May 17-20 (2021)

3. Ehrig, H. et al.: Graph and Model Transformation. Springer (2015)

4. Allemang, D., Gandon, F., Hendler, J.A.: Semantic web for the working ontologist:
effective modeling for linked data, RDFS, and OWL. ACM books (2020)

5. Baader, F., Horrocks, I., Sattler, U.: Description Logics as Ontology Languages for
the Semantic Web. In: Hutter, D., Stephan, W. (eds.) Mechanizing Mathematical
Reasoning 2005. LNCS, vol. 2605, pp. 228–248. Springer, Berlin, Heidelberg (2005).
https://doi.org/10.1007/978-3-540-32254-2 14

https://doi.org/10.1007/978-3-540-32254-2_14

14 S. Vinnikov et al.

6. Chernenkiy, V., Gapanyuk, Y., Nardid, A., Skvortsova, M., Gushcha, A., Fedorenko,
Y., Picking, R.: Using the metagraph approach for addressing RDF knowledge rep-
resentation limitations. In: 2017 Internet Technologies and Applications, ITA 2017
- Proceedings of the 7th International Conference, pp. 47–52. (2017)

7. MacLane, S. Categories for the Working Mathematician. Springer-Verlag, New York
(1971)

8. Awodey, S.: Category Theory. Oxford University Press (2010)
9. Leinster, T.: Basic Category Theory. Cambridge University Press (2014)
10. Yanofsky, N.S.: Theoretical Computer Science for the Working Category Theorist.

Cambridge University Press (2022)
11. Grandis, M.: Category Theory and Applications: A Textbook for Beginners. World

Scientific (2018)
12. Grami, A.: Discrete Mathematics: Essentials and Applications. Academic Press

(2022)
13. Mendelson, E.: Introduction to mathematical logic. CRC Press/Taylor & Francis

Group (2015)

	Analysis of the Metagraph Data Model in Terms of Metagraph Operations and Category Theory

