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Abstract. In this work, we explore the applicability of autoencoders
as a vector compressor in the pipeline of approximate nearest neighbor
search. We conduct extensive tests with several autoencoders and indices
on several large-scale datasets. The results show that while none of the
combinations of autoencoders and index can completely outperform the
pure solutions, it might be useful in some cases. We also find some em-
pirical connections with the optimal hidden layer dimension and intrinsic
dimensionality of the datasets.1
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1 Introduction

In today’s information age, the volume of data available on the internet is grow-
ing exponentially. This growth has created a need for effective methods of infor-
mation retrieval that can handle the sheer amount of data available. Information
retrieval (IR) is the process of searching for and retrieving information relevant
to a user’s needs. It involves both retrieving and filtering large amounts of data
to present only the most relevant results to the user. This is especially crucial
in fields such as academic research, where the accuracy and relevance of re-
trieved information can make a significant impact on the success of a project.
The exponential growth of data has made it increasingly difficult to find relevant
information amidst the sea of irrelevant data.

One of the most active areas of research in information retrieval is the prob-
lem of approximate nearest neighbor (ANN) search. This problem arises in a wide
range of applications, from recommendation systems to computer vision, where
the goal is to find the nearest neighbors to a query point in a large database of
vectors. Exact nearest neighbor search algorithms can be computationally expen-
sive and impractical for large-scale datasets, leading researchers to investigate
approximate algorithms that can efficiently return an approximate solution with
reasonable accuracy. These methods typically involve building a data structure,
such as a tree or graph, to efficiently prune the search space and avoid examining
⋆ Supported by organization Foundation for Assistance to Small Innovative Enter-

prises.
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all possible candidates. Another possible direction is to explore various vector
compression methods.

Specifically, the problem with large-scale datasets arises from the fact that
the common vector dimension ranges from one hundred to a thousand. This leads
to big storage space demands as well as RAM to operate with them. Although
graphical processing units allow fast computations over high-dimension matrices,
it would be much better to find a way to compress the vector representation to
save resources.

In this work, we investigate autoencoder networks as a compressor for nearest
neighbor search. Probably, they seem to be irrelevant due to their high compu-
tation cost. Nevertheless, we decide to explore what benefits autoencoders might
bring to us in the role of vector compressor in the neighbor search pipeline.

As a contribution of this paper, we test our hypothesis of using neural au-
toencoders as vector compression methods by conducting an extensive test of
various ANN methods with several autoencoders on six datasets. We also found
out that there exists a compression boundary crossing that causes quick perfor-
mance decay independent of autoencoder type on some search algorithms that
shows some quality level before this boundary, we experimentally bound it with
intrinsic dimension of the dataset.

2 Related work

The first search algorithms were tree-based methods, such as KD-trees [3] and
Ball trees [14], partitioning the data into a tree structure for efficient searching.
These methods have been widely used for ANN search in low- to moderate-
dimensional spaces, where the data can be efficiently partitioned into a tree
structure. Several variants of tree-based methods have been proposed to improve
their performance, including the use of randomized KD-trees and hierarchical
clustering. These methods are efficient and effective for lower-dimensional data.

As was mentioned, there are a lot of studios about compression methods. One
popular method is product quantization (PQ) [8]. It involves dividing the data
into subspaces and then independently quantizing each subspace. This method
has been shown to be effective for high-dimensional data and has been used in
applications such as image retrieval and speech recognition.

Another big branch of algorithms is graph-based. For example, navigable
small world (NSW) [1] graphs are a type of graph-based method for ANN search
that uses a small-world network structure to efficiently navigate the data. NSW
graphs maintain a balance between local and global connections, which allows
them to efficiently navigate the data for ANN search. This method has been
shown to be effective for high-dimensional data and has been used in applications
such as image retrieval and text search. Hierarchical navigable small world graphs
(HNSW) [12] are an extension of NSW graphs that use a hierarchical structure
to further improve the efficiency of ANN search. HNSW graphs divide the data
into multiple levels, each of which contains a different graph structure. This
allows for efficient navigation of the data at different scales, improving the overall
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efficiency of ANN search. HNSW graphs have been shown to be effective for high-
dimensional data and have been used in applications such as image retrieval and
recommendation systems.

Navigable spread-out graphs (NSG) [5] is another type of graph-based method
for ANN search that uses a spread-out network structure to efficiently navigate
the data. NSG graphs maintain a balance between exploration and exploitation
of the data, which allows them to efficiently search for nearest neighbors in high-
dimensional spaces. This method has been shown to be effective for a wide range
of applications, including image retrieval, text search, and recommendation sys-
tems.

Another line of work which is adjacent to ours in some way is to make em-
beddings that would be especially good for ANN search. For example, in this
work [16], authors propose a learnable embedding indexing layer that composes
of several techniques. With presented specific loss regularization term, this layer
can be plugged in any deep retrieval model that allows jointly learn embeddings
and its index.

3 Problem formulation

3.1 Nearest neighbor search

Nearest neighbor search is a fundamental problem in many machine learning
and data mining applications, where the goal is to find the k nearest neighbors
of a given query point in a large dataset. Formally, let X = {x1, x2, ..., xn} be a
dataset of n d-dimensional points, and let q be a query point in d-dimensional
space. The k nearest neighbors of q in X are defined as the k points xi in X
that minimize the distance function dist(q, xi):

mini=1,2,..,kdist(q, xi) (1)

where dist(q, xi) is a distance function that measures the similarity or dissimilar-
ity between the query point q and the database point xi, which is the Euclidean
metric in our case.

The brute-force approach of computing the distances between the query point
and every point in the dataset has a time complexity of O(nd), which is imprac-
tical for large datasets. Approximate nearest neighbor (ANN) algorithms aim to
find an approximate set of k nearest neighbors that are close to the true nearest
neighbors, while significantly reducing the computational cost:

dist(q, xi) ≤ (1 + ϵ)dist(q, x∗
i ) (2)

where ϵ is a degree of the relaxation and x∗
i are the approximately closest exam-

ples.
The accuracy of ANN algorithms is typically measured in terms of recall,

which is the proportion of true nearest neighbors that are found by the algorithm.
Let NN(q) denote the set of true k nearest neighbors of q in X. The recall R@k
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of an ANN algorithm that returns a set of k points S(q) for a given query point
q is defined as:

R@k =
|S(q) ∩NN(q)

|NN(q)|
(3)

where |S(q) ∩NN(q)| is the cardinality of the intersection of S(q) and NN(q),
and |NN(q)| is the cardinality of NN(q).

The efficiency of ANN algorithms is measured in terms of the query time,
which is the time required to find the k nearest neighbors for a given query point.
The goal of ANN algorithms is to achieve a good balance between accuracy and
efficiency, by trading off between the quality of the approximate solution and
the computational cost of finding it.

3.2 Using autoencoders for dataset compression

Neural autoencoders [15] is a type of neural network that is used for unsupervised
learning. They consist of an encoder network and decoder networks, and the goal
of the network is to reconstruct its input at its output. The encoder network maps
the input data to a lower-dimensional latent space, while the decoder network
maps the latent space back to the input space. We hypothesize that we can use
the encoder to efficiently reduce the dimensionality of vectorized datasets.

Formally, let x be the input data and h be the latent representation in
the encoder network. The encoder network maps x to h using a function f as
h = f(x). Similarly, let y be the output data and g be the function that maps h
back to y in the decoder network, so we have y = h. The goal of the autoencoder
is to minimize the reconstruction error, which is the difference between the input
x and the output y. One common way to measure the reconstruction error is
the mean-squared error (MSE):

L(x, y) =
1

n

n∑
i=1

(xi − yi)
2 (4)

where n is the number of data points in the input.
The main property that should have an autoencoder is to preserve the rela-

tions between points while transforming the vector space. In our experiments,
we use several modifications of the described autoencoder, which we will refer
to as the Vanilla autoencoder, that we believe preserves the point relations
better than the Vanilla one.

We start with The Neighborhood Reconstructing Autoencoders [11]
the idea of which is to employ an approximation of the decoder function with the
help of local graphs that captures the local geometry of the data distribution.
That will help to make the autoencoder more robust to the overfitting and
connectivity issues. This method implies building a fully connected neighborhood
graph of the data that will be used in the loss function

L =
∑
i

∑
x∈N(xi)

||x− fθ(gϕ(x); gϕ(xi))|| (5)
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where N(xi) is the set of neighborhood points of xi and fθ(.; gϕ(xi)) is the
approximation of the decoder fϕ(x) about the encoded point gϕ(x).

Another modification is Deep Clustering with Convolutional Autoen-
coders (DCEC) [7] where the Vanilla architecture was modified by adding a
clustering layer after the encoder. Adding this layer is expected to learn clusters
of the data which we believe allows doing more fine-grained separation of the vec-
tor space leading to better performance of non-graph search algorithms. Mathe-
matically, the clustering layer represents cluster centers as trainable weights and
maps each hidden point zi into a soft label qi that is calculated as follows:

qij =
(1 + ||zi − µi||2)(−1)∑
j(1 + ||zj − µj ||2)(−1)

(6)

The cluster loss is defined as

Lc = KL(P ||Q) (7)

with P as target distribution. The authors propose the heuristic target distri-
bution (see eq. 8) but generally, it can be any distribution that (1) can produce
soft labels, (2) improve the cluster purity (3) pay attention to a high confident
point and (4) normalize the contribution of centroids to prevent distortion of the
embedding space. Finally, the clustering loss is added to a reconstruction loss
with a hyperparameter γ that controls its influence

L = Lrec + γLc (8)

Last but not least is Hyperbolic Antoencoder [13] where authors propose
an autoencoder that works in a hyperbolic space. They use the Poincare Ball
model that is defined as Bn = {x ∈ Rn : ||x||} with the Riemannian metric
tensor. The feature of this autoencoder lies in the distance metric between two
points (see eq. 2) that makes some distances that would be close in Euclidean
space exponentially large in hyperbolic space. That allows us to effectively model
complex networks and tree-like structures.

4 Experiments

4.1 The datasets

To make our test broad enough, we conduct our experiments on six datasets, the
summary statistics of which are in Table 1. Their descriptions are as follows:

– SIFT-Small Dataset [8]: This is a smaller version of the SIFT-1M dataset
and consists of 10,000 SIFT descriptors extracted from a set of images.

– SIFT-1M Dataset: This dataset consists of 1 million SIFT descriptors ex-
tracted from a set of images and is commonly used as a benchmark for
evaluating the performance of ANN search algorithms.
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Table 1. The summary statistics of datasets. BPS stands for Bytes per Component.

Name Dimension Vec cnt BPS Query vec cnt Learn vec cnt Orig size
siftsmall 128 10,000 4 100 25,000 5,120,000
sift1m 128 1,000,000 4 10000 100,000 512,000,000
gist 960 1,000,000 4 1000 500,000 3,840,000,000
sift1b 128 1,000,000,000 1 10000 100,000,000 128,000,000,000
OID small 512 1,012,239 4 1012 101,223 2,073,065,472
OID 512 8,390,600 4 83906 843,480 17,183,948,800
wiki small 1024 576,940 4 576 57,694 2,363,146,240
wiki 1024 87,817,400 4 87783 1,317,261 359,700,070,400

– SIFT-1B Dataset: This is an even larger dataset than SIFT-1M, consisting
of 1 billion SIFT descriptors extracted from a set of images. It is also com-
monly used as a benchmark for evaluating the performance of ANN search
algorithms.

– GIST Dataset [8]: This is a dataset of 1 million GIST descriptors. Another
commonly used benchmark for ANN search algorithms.

– Wiki-LASER Dataset: This is the dataset that we created from Wikipedia
articles. We split each text into sentences and encoded them with language
agnostic sentence representations (LASER) technique [6].

– Open Images Dataset [10]: This is a large-scale dataset of images that con-
tains over 9 million images with more than 30 million bounding boxes. The
dataset is designed to facilitate object detection, classification, and visual re-
lationship detection tasks. We use ResNet18 to get embeddings from images
that were normalized and transformed in one way.

4.2 Test setting

We extensively test various pipelines that we compose of separate flags and com-
ponents. We organize the results of only perspective combinations in tables for
each particular dataset. Due to space limitations, we place them in Appendix
A. Moreover, we have to divide tables into two parts. The first part consists of
results and the second part describes some variables. The rows can be matched
by the ID column. We use implementations of various indices from Faiss library
[9]. We can divide our test case into two groups: the first group is where we use
one autoencoder and then feed output vectors to a Faiss index and quantization
combination, and the second group is where only Faiss components are used.
As indices, we use Flat, inverted file index with product quantization (IVFPQ),
HNSW, and NSG indices (index). As autoencoders (enc) we use all described
variants: Vanilla, DCEC, HyperAE, NRAE. In addition, we experiment with in-
put embedding and output normalization (norm inp vect norm embs
and norm out vect), the hidden dimension (hidden dim) of autoencoders,
and setting hidden layer (set l hidden) dimension equals to the input di-
mension in autoencoders. They are represented as columns in the second table.
If the column is not presented, that means that it has the same value in each
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cell. By default, the absence means that action was not taken. Also, we report
constants such as the batch size being 8, the number of train epochs being 5,
nprobe parameter being 20. We compute several metrics such as different vari-
ants of recall that we encode as n− Rm where n is the number of true nearest
neighbors and m is the top relevant vectors returned by the index. We also com-
pute compression ratio (cr), space-saving (ss), on-disk index size (index
size), one vector search time (o-v-s), overall search time (s), and finally
train and index time (t_i). All experiments were done in two stages. At first,
we select a small subset of the dataset in order to find parameter combinations
that work best. Next, we run several selected setups on the entire dataset and
the results we have provided.

4.3 Choice of autoencoder dimension

An important question is how to choose the dimension of the hidden layer,
which is equivalent to a compression rate. Unfortunately, there is no clear way to
determine the best-hidden layer dimension that wouldn’t hurt the representation
while compressing the vector space as soon as possible.

Fig. 1. Test HNSW with autoencoders. The left plot is an inference time. The right
plot is a recall.

During our preliminary study, we found out that there exists a compression
boundary crossing that causes quick performance decay independent of autoen-
coder type on some search algorithms that shows some quality level before this
boundary, for example, HNSW on Fig 1. The study of this phenomenon leads
to the conclusion that this boundary is an intrinsic dimension, which is defined
as a dimension of the manifold to which the embedding space belongs [4]. Al-
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ternatively, it can be thought of as a minimal number of dimensions that can
represent the data.

Fig. 2. The test of the Vanilla autoencoder loss behavior with several intrinsic dimen-
sions of synthetic datasets.

Table 2. The results of intrinsic dimensionality estimation algorithm test on SIFT1M.

Alg. Name Dimension Time, s
Expected Simplex Skewness algorithm 25.4422 9324.320
Dimensionality from Angle and Norm Concentration algorithm nan 265.773
Correlation Dimension 9.99273 420.920
Fisher Separability algorithm 3.11696 304.551
k Nearest Neighbors 3 695.634
Principal component analysis 10 0.880
Manifold-Adaptive Dimension Estimation algorithm 21.9273 1956.410
Minimum Neighbor Distance—Maximum Likelihood 1 255.691
Maximum Likelihood Estimation 0 256.540
Method Of Moments 19.5008 253.178
Tight Local Estimator 19.1451 288.200
Two Nearest Neighbors 10.4751 831.291

We experiment with synthetically generated data with the known intrinsic
dimension with the "Nonlinear manifold" mode. We use the scikit-dimension
package[2] for a generation. Next, we train the Vanilla autoencoder on the train
set and calculate the loss on the test set with the hidden layer ranging from
source dimension to 10. As intrinsic dimensions, we test 8, 32, and 64. In Fig
2 we can see that loss starts increasing after the hidden layer becomes less
than the intrinsic dimension. We also repeat this experiment with real data,
in particular, with SIFT1M and Open Images Dataset. We found out that the
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loss of the autoencoder starts increasing near the dimension when search quality
starts decreasing.

As we experimentally convince that there is an optimal dimension to com-
press to, we examine all algorithms for intrinsic dimensionality estimation of
SIFT1M that are implemented in the scikit-dimension package. Based on our
empirical study, we know that the intrinsic dimension of SIFT1M is about 60.
Unfortunately, all algorithms fail to provide a close to 60 value, see Table 2.
In addition, some algorithms are very time-consuming. We leave the ways for
automatic optimal dimension selection for future work.

5 Results

As we can clearly see, the graph-based search methods NSG and HNSW show
near-perfect results in terms of all variants of recall for all datasets (Tables 3,
5, 7). The disadvantages of these methods are that they consume vectors as is
and moreover add some memory overhead which can be seen from compression
ratio and space-saving metrics. They are also fast at the inference stage and have
medium speed on indexing.

Speaking of autoencoders, we see that, unfortunately, none of the combina-
tions, where they are presented, show results that completely outperform the
pure Faiss pipeline. So we can conclude that compressing the vector space au-
toencoders disturbs it too much. It leads that local relationship also disturbs,
so points that were neighbors in the source space could be far away in a com-
pressed space. Comparing only autoencoders, we can see that one autoencoder
works better than others depending on the dataset, but we can highlight that
HyperAE works better in many cases. In contrast, NRAE doesn’t show a valu-
able result in any setting.

We also see that for Wiki and Open Images datasets, the pipelines show
identical results in tern of 1-R@, so we can reduce the comparison to 10-R@. Here
we can highlight that combination of Vanilla AE with Flat index is comparable
with HNSW but provides a double reduction of size. Though, the inference time
with Vanilla AE is much slower.

6 Conclusion

In this paper, we investigate the applicability of neural autoencoders as a vector
compressor component in the neighborhood search pipeline. We consider the
Vanilla autoencoder and its variants that better preserve space geometry while
compressing with different index techniques.

We found that autoencoders weren’t able to compress the source vector space
in such a way that the resulting space accurately preserves the local relationship
between vectors, though some of them do it better than others. During the main
work, we also found some connections between the lower-bound compression of
autoencoders and intrinsic dimensionality estimation. We show that the loss of
the autoencoder could be a great signal that an intrinsic dimension has been
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reached, whereas none of the tested estimation algorithms can handle such a
high dimension.

Experiments have shown that by using encoders in some cases, it is possible
to save a vector of a smaller dimension with confidence that the selected quality
metric retains the same level. Thus, it can give an advantage, for example, in
the problem of storing compressed vectors.

In future work, we will continue to search for the autoencoder that disturbs
the space minimally while compressing the data as much as possible. We also will
try to come up with how to automate the choice of autoencoder dimensionality.

Acknowledgements We thanks Foundation for Assistance to Small Innovative
Enterprises for funding this work (Agreement №12GUKodIIS12-D7/72692).
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7 Appendix A

Table 3. SIFT1M main results. The first six columns are the recall results which
formatted according to the Formula 3. For the rest columns, an explanation can be
found in 4.2 in bold.

id 1-R100 1-R10 1-R1 10-R100 10-R10 100-R100 index_size cr ss o-v s s t_i
0 0.56 0.33 0.16 0.38 0.15 0.18 256000045 2.0 0.5 0.0282 58.2 80.57
1 0.56 0.33 0.16 0.38 0.15 0.17 528129506 0.97 -0.03 0.0058 0.67 98.56
2 1.0 0.93 0.57 0.98 0.62 0.65 256000045 2.0 0.5 0.0259 57.75 289.5
3 1.0 0.94 0.58 0.98 0.63 0.67 256000045 2.0 0.5 0.0257 57.88 299.66
4 1.0 0.93 0.56 0.97 0.61 0.65 256000045 2.0 0.5 0.0283 57.87 108.23
5 0.98 0.82 0.41 0.92 0.49 0.56 24082612 21.26 0.95 0.0192 12.76 131.78
6 1.0 0.92 0.56 0.97 0.61 0.65 72133300 7.1 0.86 0.0257 17.92 190.7
7 1.0 0.93 0.56 0.97 0.61 0.65 256000045 2.0 0.5 0.0283 57.87 108.23
8 1.0 0.93 0.56 0.97 0.61 0.65 256000045 2.0 0.5 0.0283 57.87 108.23
9 0.99 0.87 0.44 0.96 0.54 0.62 24164532 21.19 0.95 0.0097 4.65 28.87
10 1.0 1.0 0.81 1.0 0.87 0.89 72264372 7.09 0.86 0.0099 4.75 99.95
11 1.0 1.0 0.81 1.0 0.85 0.85 72663732 7.05 0.86 0.0069 1.79 108.84
12 1.0 1.0 0.9 1.0 0.86 0.66 784129506 0.65 -0.53 0.007 0.74 31.54
13 1.0 1.0 0.99 1.0 0.99 0.94 596221684 0.86 -0.16 0.007 1.04 114.66

Table 4. SIFT1M parameter variations. Hidden dim is 64. The description of the
parameters can be found in 4.2.

id index norm embs encoder
0 Flat false dcec
1 HNSW32 false dcec
2 Flat false hyperae
3 Flat true hyperae
4 Flat false vanae
5 IVF64,PQ16 false vanae
6 IVF256,PQ64 false vanae
7 Flat false vanae
8 Flat false vanae
9 IVF64,PQ16 false -
10 IVF256,PQ64 false -
11 IVF1024,PQ64 false -
12 HNSW32 false -
13 NSG32 false -
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Table 5. GIST main results. The first six columns are the recall results which formatted
according to the Formula 3. For the rest columns, an explanation can be found in 4.2
in bold.

1-R100 1-R10 1-R1 10-R100 10-R10 100-R100 index_size cr ss o-v s s t_i
0 0.5 0.23 0.09 0.31 0.09 0.12 130465972 29.43 0.97 0.0167 1.58 860.27
1 0.0 0.0 0.0 0.0 0.0 0.0 1232129506 3.12 0.68 0.0061 0.58 2,111.7
2 0.0 0.0 0.0 0.0 0.0 0.0 1232129506 3.12 0.68 0.0063 0.59 2,100.57
3 0.0 0.0 0.0 0.0 0.0 0.0 1232129506 3.12 0.68 0.0061 0.58 2,047.03
4 0.0 0.0 0.0 0.0 0.0 0.0 1232129506 3.12 0.68 0.0072 0.57 1,969.21
5 0.07 0.04 0.03 0.03 0.01 0.02 2192129506 1.75 0.43 0.006 0.59 2,189.44
6 0.06 0.04 0.02 0.03 0.01 0.02 130465972 29.43 0.97 0.0179 1.68 2,086.03
7 0.06 0.04 0.03 0.03 0.01 0.02 250465972 15.33 0.93 0.029 3.08 2,112.66
8 0.5 0.23 0.09 0.31 0.09 0.12 130465972 29.43 0.97 0.0167 1.58 860.27
9 0.5 0.23 0.09 0.31 0.09 0.12 130465972 29.43 0.97 0.0167 1.58 860.27
10 0.5 0.23 0.09 0.31 0.09 0.12 130465972 29.43 0.97 0.0167 1.58 860.27
11 0.98 0.85 0.42 0.94 0.52 0.59 129968308 29.55 0.97 0.0155 1.47 190.0
12 1.0 0.98 0.63 1.0 0.69 0.69 252923572 15.18 0.93 0.0114 1.15 454.85
13 1.0 0.99 0.67 1.0 0.6 0.43 4112129506 0.93 -0.07 0.0067 0.68 390.93
14 1.0 0.98 0.63 1.0 0.69 0.69 252923572 15.18 0.93 0.0114 1.15 454.85

Table 6. GIST parameter variations.The description of the parameters can be found
in 4.2.

id index norm embs enc hidden dim norm inp vect norm out vect set l hidden
0 IVF1024,PQ120x8 false dcec 480 false false true
1 HNSW32 false hyperae 240 false false false
2 HNSW32 false hyperae 240 false false true
3 HNSW32 true hyperae 240 true true false
4 HNSW32 true hyperae 240 true true true
5 HNSW32 false vanae 480 false false true
6 IVF1024,PQ120x8 false vanae 480 false false true
7 IVF1024,PQ240x8 false vanae 480 false false true
8 IVF1024,PQ120x8 false dcec 480 false false true
9 IVF1024,PQ120x8 false dcec 480 false false true
10 IVF1024,PQ120x8 false dcec 480 false false true
11 IVF256,PQ120x8 false - - - - -
12 IVF1024,PQ240x8 false - - - - -
13 HNSW32 false - - - - -
14 IVF1024,PQ240x8 false - - - - -
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Table 7. Open Image Dataset main results. The first six columns are the recall results
which formatted according to the Formula 3. For the rest columns, an explanation can
be found in 4.2 in bold.

1-R100 1-R10 1-R1 10-R100 10-R10 100-R100 index_size cr ss o-v s s t_i
0 0.99 0.99 0.98 0.83 0.54 0.45 10937995050 1.57 0.36 0.0147 4.79 4,096.41
1 0.99 0.99 0.98 0.83 0.54 0.45 10937995050 1.57 0.36 0.0157 4.83 4,111.58
2 1.0 1.0 1.0 0.8 0.49 0.47 609867876 28.18 0.96 0.0163 75.98 3,462.03
3 1.0 1.0 1.0 0.8 0.49 0.47 609867876 28.18 0.96 0.0163 75.8 3,484.63
4 1.0 1.0 1.0 0.81 0.51 0.48 612096100 28.07 0.96 0.0163 76.52 4,180.76
5 1.0 1.0 1.0 0.81 0.5 0.48 612096100 28.07 0.96 0.0165 76.81 4,178.86
6 0.99 0.99 0.98 0.83 0.54 0.45 10937995050 1.57 0.36 0.0147 4.79 4,096.41
7 0.99 0.99 0.98 0.83 0.54 0.45 10937995050 1.57 0.36 0.0157 4.83 4,111.58
8 1.0 0.99 0.92 0.99 0.79 0.58 19579512618 0.88 -0.14 0.0171 8.2 1,731.1
9 1.0 1.0 1.0 0.95 0.58 0.57 616552548 27.87 0.96 0.009 20.54 1,487.1
10 1.0 0.99 0.92 0.99 0.79 0.58 19579512618 0.88 -0.14 0.0171 8.2 1,731.1

Table 8. Open Image Dataset parameter variations. The description of the parameters
can be found in 4.2.

id index enc hidden dim set l hidden
0 HNSW32 hyperae 256 false
1 HNSW32 hyperae 256 true
2 IVF4096,PQ64 hyperae 128 false
3 IVF4096,PQ64 hyperae 128 true
4 IVF4096,PQ64 hyperae 256 false
5 IVF4096,PQ64 hyperae 256 true
6 HNSW32 hyperae 256 false
7 HNSW32 hyperae 256 true
8 HNSW32 - - -
9 IVF4096,PQ64 - - -
10 HNSW32 - - -

Table 9. Wiki-LASER main results. The first six columns are the recall results which
formatted according to the Formula 3. For the rest columns, an explanation can be
found in 4.2 in bold.

1-R100 1-R10 1-R1 10-R100 10-R10 100-R100 index_size cr ss o-v s s t_i
0 0.99 0.98 0.97 0.44 0.34 0.24 6340197076 56.73 0.98 0.0412 268.86 22,424.1
1 0.99 0.98 0.97 0.33 0.3 0.19 6340197076 56.73 0.98 0.0427 263.97 21,576.6
2 0.99 0.98 0.97 0.44 0.34 0.24 6340197076 56.73 0.98 0.0412 268.86 22,424.1
3 0.99 0.98 0.97 0.87 0.58 0.52 6391315156 56.28 0.98 0.024 103.61 62,943.41
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Table 10. Wiki-LASER parameter variations. Hidden dim is 256. The description of
the parameters can be found in 4.2.

id index enc set l hidden
0 IVF16384,PQ64 dcec true
1 IVF16384,PQ64 dcec false
2 IVF16384,PQ64 dcec true
3 IVF16384,PQ64 - -



16 Buyanov et al.

8 Reviewer remarks

Reviewer 1:

1. Need to add authors and their affiliations.
(a) Added.

2. Need to number the formulas.
(a) Added.

3. In the formal representation of the loss function in the description of Neigh-
borhood Reconstructing Autoencoders (page 4), in the formula, the authors
used f_theta, but in the description below, f with a tilde.
(a) Fixed.

4. The q formula (page 5, Deep Clustering with Convolutional Autoencoders)
needs to fix brackets.
(a) Fixed.

5. In the results section, will be better to reveal the names of abbreviations -
cs and ss metrics.
(a) Fixed.

Reviewer 2:

1. Formally (by mathematical notation), the authors consider the problem of
exact search for the nearest neighbor, which does not correspond to the
further presentation.
(a) Added clarification.

2. Bibliographic references are also inaccurately formatted.
(a) Don’t understand in which way. We used officially provided latex tem-

plate, and only we did is a collection of bibliographies as BibTeX file and
insertion of references in right places by latex command.

3. All abbreviations must be explicitly spelled out (IVEPQ, Table 2).
(a) Done.

4. The authors mention the new Wiki-LASER dataset, but refer to it differently
in the tables.
(a) Fixed.

5. Reference to Table 1 in the text is indicated as Table 4.1
(a) Fixed

Reviewer 3:

1. The experiment results are hard to read. You provided many big tables
without descriptive captions or any markup.
(a) Added references where the description of the column headers can be

found.
2. Plots are not monotonic over dimension. This raises questions about the

correctness of the results.
(a) We use the fact that the number of autoencoders show extreme decreas-

ing and not the behavior of each autoencoder in isolation. It’s hard to
imagine that all four autoencoders show almost the same behavior in
the same region due to the error. The same goes for the loss behavior
experiment. We hypothesize that the fluctuations can be attributed to
the stochastic nature of the learning process, where in some cases the
updated weights can locally be better than on the previous iteration.


