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Abstract. The article presents experimental results pertaining to an analysis of 

multidimensional digital data that describe applications to Russian universities 

within the constraints of spectral theory. Two-dimensional matrices extracted 

from the data contain average unified exam scores among first year students 

who enrolled under government-paid tuition to 9 engineering programs at 47 

universities in 2020 and 2021. The matrices are processed as two-dimensional 

signals from which a spectral characteristic is formed which is then used to 

simulate new signals in Fourier and Hartley harmonic bases. The simulated sig-

nals are consequently presented and explored as predictive modeling data. The 

article presents preliminary experimental results confirming prospects of using 

the proposed technique and suggests a trajectory for future inquiry. The work is 

supported by the Russian Federation Ministry of Science and Higher Education 

(projects #FSFN-2023-0006 and “Priority 2030”). 

Keywords: Spectral theory, signal simulation, Fourier basis, Hartley basis, en-

ergy spectral density. 

1 Introduction 

The harmonic simulation within the framework of spectral theory allows simulating 

random signals for a given energy spectral density function. The resulting sets of 

random signals correspond to a given energy spectral density function. Harmonic 

simulation compares favorably to simulating with random fields or shaping filters 

with regards to theoretical and executional simplicity and computational complexity 

[1]. The possibility of using different harmonic bases allows customizing for specific 

conditions pertaining to a particular task or a particular area of expertise [2, 3]. 

Power and energy spectral densities can be estimated from various data arrays us-

ing the periodogram method or the Welch method [4]. All data are signals on a physi-

cal level. Simulating based on those densities reproduces statistical dependencies 

found in real systems and events and may be utilized for equipment preparations, 

personnel training, or forecasting [5]. The common scheme of the proposed modeling 

technique is shown in Figure 1. 



2 

 

Fig. 1. Scheme of the process of simulating signals according to the spectral characteristic 

obtained on the basis of real-world data 

This scheme is often used in radio electronics, but it is promising to study its applica-

bility towards two-dimensional data arrays. Data arrays are more often studied with 

the help of artificial intelligence which often lacks in transparency compared to signal 

processing methods. This article considers 2D arrays of data on admission of appli-

cants to Russian universities, the data is used to obtain a 2D energy spectral density 

function, from which new 2D signals or data sets are then reproduced. The inquiry 

concerns whether the signal simulation method can be used to simulate arbitrary data 

and therefore compete with led transparent artificial intelligence methods. 

2 Data preprocessing 

The raw data was collected by the Russian university Higher School of Economics 

(HSE) within their “Monitoring The Quality of Enrolment in Russian Universities” 

initiative, it contains average results of the unified state exam among applicants ad-

mitted to various programs at various universities for a government-paid education 

from 2011 to 2022 [6]. Applicants are admitted to universities based on their unified 

exam scores and internal exam scores. The programs within universities have a lim-

ited number of applicants they may accept for a government-paid tuition – those are 

given to the highest ranking applicants. Student-paid education is more flexible in 

terms of required academic scores and does not contain quite the same information 

about the quality of a university. Average scores among the applicants are helpful in 

determining which programs at which universities are the most popular among the 

highest scoring applicants. Assuming that the unified exam scores are adequate at 

indicating academic capabilities of applicants the described data might be used to 

develop tools that support the managerial decisions in the education sphere [7]. It was 

decided to limit the study to a set of 9 engineering areas, for each area in each year it 

was decided to consider only the top 10 universities with the highest average scores 

for the unified state exam among applicants for 2020 and 2021. As a result 47 univer-

sities were selected. The full list of the universities and programs can be found at the 

HSE web source [6]. 

Spectral density estimation 

Harmonic signal simulation 

Real data / signals 

Energy spectral 

density function 

Simulated data / signals 
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Values in the tables extracted from the data are the average unified exam grades 

among the students accepted into the university represented in a column to study in 

the program represented by a row. Below is the Table 1 for year 2021. The table was 

abridged for the article, the full table containing 9 rows and 47 columns describing 9 

programs among 47 universities may be accessed at GitHub [8]. The tables for differ-

ent years were combined, the names of the departments were marked with the year, 

then the data was again separated by years - this was necessary in order to guarantee 

the same arrangement of universities in the columns in the tables for different years. 

The universities displayed are: Baltic State Technical University (BSTU) [9], Ufa 

State Petroleum Technological University (USPTU) [10], Ural Federal University 

(UrFU) [11], Voronezh State University (VSU) [12]. 

Table 1. The average results of the unified state exam among applicants admitted to 9 pro-

grams (rows) at 47 universities (columns) for a government-paid tuition 

Programs BSTU USPTU … UrFU VSU 

Automation and control 0 0 … 0 0 

Aviation and space instru-

mentation 

73.2 0 … 0 0 

Business Informatics 0 0 … 89.9 0 

… … … … … … 

Information Security 0 0 … 0 0 

Nuclear physics and tech-

nology 

0 0 … 0 79.1 

Technological machines 0 76.1 … 0 0 

 

The Table 1 is the result of data pre-processing, the table represent a two-dimensional 

matrix or a two-dimensional signal suitable for processing within the framework of 

spectral theory. The full table for 2020 may be found at GitHub [8]. Figure 2 shows 

graphical representations for the 2020 and 2021 data matrices. The matrices are de-

picted as signals x(i1, i2), i1 represents universities, i2 represents programs. 

 

Fig. 2. Graphs of average unified exam scores among the applicants accepted to 9 general engi-

neering programs at 47 Russian universities for 2020 and 2021 
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3 Signal simulation 

3.1 Spectral density estimation 

An important signal processing tool is the Fourier transform, which allows you to go 

from the time or space domain to the frequency domain. Figure 3 shows the Fast Fou-

rier transforms (FFT) 𝑋(𝜔1, 𝜔2)  of two-dimensional data matrices for 2020 and 

2021, where 𝜔1 and 𝜔2 are frequencies along axis i1, i2 correspondingly. 

 

Fig. 3. Fourier transforms of admission data in 9 engineering areas at 47 Russian universities 

for 2020 and 2021 

The calculation of the Fourier transforms is necessary when evaluating the signal’s 

spectral density. Energy spectral density of a single signal equals its squared absolute 

Fourier transform values: 

 𝑆𝐸𝑖(𝜔1, 𝜔2) = |𝑋𝑖(𝜔1, 𝜔2)|2 = |ℱ(𝑥𝑖(𝑖1, 𝑖2))|2, 

where the 𝑆𝐸𝑖  is the energy spectral density function of an individual signal 𝑥𝑖(𝑖1, 𝑖2). 

ℱ is a Fourier transform. 𝑥𝑖(𝜏1, 𝜏2) is a spatial representation of a signal, and 

𝑋𝑖(𝜔1, 𝜔2) is a frequency representation that can be found as a Fourier transform of 

𝑥𝑖(𝑖1, 𝑖2). Individual signals are considered as discrete finitely windowed samples of 

the same signal [2, 13]. Energy spectral densities or Fourier transforms of individual 

sections of the data are averaged to obtain collective general energy spectral density 

function. 

 𝑆𝐸(𝜔1, 𝜔2) =
1

𝑁
∑ |𝑋𝑖(𝜔1, 𝜔2)|2𝑁

𝑖=1 =
1

𝑁
∑ |ℱ(𝑥𝑖(𝑖1, 𝑖2))|2𝑁

𝑖=1 . 

Figure 4 shows a two-dimensional spectral density function obtained by this method 

from the input data for 2020 and 2021. In this paper energy spectral density is justi-

fied since the discrete time Fourier transforms exist for the chosen signals, however,  

the future inquiry might benefit from using power spectral density to cover the case of 

a so called power signal for which such a transform is meaningless [9, 14]. 
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Fig. 4. Energy spectral density function for 2020 and 2021 

3.2 Fourier signal simulation 

The resulting spectral density function can be used to simulate signals in various har-

monic bases within the framework of spectral theory. One of such bases is the com-

plex-exponential Fourier basis, where the real part of the functions is taken equal to 

the cosine function 

𝑅𝑒 {𝑒𝑥𝑝 [2𝜋 (
𝑘1𝑡1

𝑇1

+
𝑘2𝑡2

𝑇2

)]} = 𝑐𝑜𝑠 [2𝜋 (
𝑘1𝑡1

𝑇1

+
𝑘2𝑡2

𝑇2

)] , 

and the imaginary part is equal to the sine function [2, 15]: 

𝐼𝑚 {𝑒𝑥𝑝 [2𝜋 (
𝑘1𝑡1

𝑇1

+
𝑘2𝑡2

𝑇2

)]} = 𝑠𝑖𝑛 [2𝜋 (
𝑘1𝑡1

𝑇1

+
𝑘2𝑡2

𝑇2

)]. 

The energy spectral density function 𝑆𝐸 is used to obtain the Fourier coefficients 𝑋𝐹: 

𝑋F(𝑘1, 𝑘2) = √
𝑆𝐸 (

2𝜋
𝑇1

𝑘1,
2𝜋
𝑇1

𝑘2)

𝑇1
2𝑇2

2(1 + 𝜆𝑘1,𝑘2

2 )
=

1

𝑇1𝑇2

√
𝑆𝐸 (

2𝜋
𝑇1

𝑘1,
2𝜋
𝑇1

𝑘2)

1 + 𝜆𝑘1,𝑘2

2 , 

𝑘1, 𝑘2 = 0,1, …, 

where 𝑇1,  𝑇2 are periods of the two-dimensional signal;  

𝜆𝑘1,𝑘2

  is a tangent function of a 2D phase density which is needed since the energy 

spectral density only describes amplitudes but not phases and therefore is calculated 

as an average phase spectrum of the original signals. 

𝜆𝑘1,𝑘2

 =
1

𝑁
∑(𝐼𝑚[ℱ(𝑥𝑖(𝑖1, 𝑖2))]/𝑅𝑒[ℱ(𝑥𝑖(𝑖1, 𝑖2))])

𝑁

𝑖=1

. 

Fourier coefficients are used to obtain the simulated signal: 
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x(i1, i2) = ∑ ∑ 𝑋F(𝑘1, 𝑘2) 𝑒𝑥𝑝 [𝑗2𝜋 (
𝑘1𝑖1

𝑇1

+
𝑘2𝑖2

𝑇2

)]

N2
2

k2=0

N1−1
2

k1=0

, i1 ∈ [0, N1), i2 ∈ [0, N2). 

The deterministic signal received by running such a calculation without adding ran-

dom coefficients is presented on Figure 5. The resulting signal has a complex nature, 

the real components were depicted both for deterministic and random signal simula-

tion in Fourier basis. 

 

Fig. 5. Deterministic signal obtained by simulating in the Fourier basis for the energy spectral 

density function based on the real-world data 

Random coefficients might be added. Random coefficients may be random signs thus 

taking on values of “-1” or “+1” randomly or random values in the interval [-1, +1] 

[1]. A set of random signals generated by adding random coefficients to the formula is 

presented on Figure 6. 

 

Fig. 6. Random signals obtained by simulating in the Fourier basis for the energy spectral den-

sity function based on the real-world data 
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The leftmost signal on the figure 6 was picked for post processing and comparison. 

It’s range was normalized and then fitted to the average of the two original signals. 

The values were moved up so that the minimum is at 0 and then divided by the new 

maximum, multiplied by the average maximum 98.5 found from the original data. 

The values below the average original minimum 71.35 were dropped.  Simulated data 

table after the post-processing is shown on the Table 2. 

Table 2. Data obtained by simulating in the Fourier basis for the energy spectral  

density function based on the real-world data 

Programs BSTU USPTU … UrFU VSU 

Automation and con-

trol 

78.397 0 … 0 0 

Aviation and space 

instrumentation 

0 0 … 0 0 

Business Informatics 0 0 … 78.262 0 

… … … … … … 

Information Security 0 0 … 0 0 

Nuclear physics and 

technology 

0 0 … 0 0 

Technological ma-

chines 

0 0 … 72.767 0 

 

The Table 2 does not allow viewing the entire array of data, so figure 7 shows the 

original data for 2021 (7a) and the simulated data after post-processing (7b). 

a) 

 

b) 

 

Fig. 7. Graph of the original data matrix for 2021 (a) and a graph of the Fourier simulated and 

adjusted data matrix (b) 

The data being spread across 𝑖1 axis is consistent with the original data. However, the 

simulation “created” new programs and “closed” the old ones. Such variations are 

contingent on the random coefficients generated for each experiment. The average 

difference of values in the simulated data and averaged 2020 and 2021 data is 6.7276. 

The average difference across 500 experiments with different random coefficients and 

therefore different simulated data with the same post processing is 7.9279. 
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3.3 Hartley signal simulation 

Another harmonic basis is a Hartley basis that uses a special cas function [15]: 

cas(ω1t1 + ω2t2) = cos [2π (
k1 ∗ t1

T1

+
k2 ∗ t2

T2

)] + sin [2π (
k1 ∗ t1

T1

+
k2 ∗ t2

T2

)]. 

Fourier coefficients are used to obtain a simulated signal: 

x(i1, i2) = ∑ ∑ 𝑋F(𝑘1, 𝑘2) 𝑐𝑎𝑠 [2𝜋 (
𝑘1𝑖1

𝑇1

+
𝑘2𝑖2

𝑇2

)]

N2
2

k2=0

N1−1
2

k1=0

, i1 ∈ [0, N1), i2 ∈ [0, N2). 

Simulation according to the given rules led to the generation of various signals. Fig-

ure 8a shows a deterministic signal, Figure 8b shows a series of random signals. 

a) 

 

b) 

 

Fig. 8. Deterministic signal (a) and random signals (b) obtained by simulating in the Fourier 

basis for the above spectral density 

For Hartley simulated data post-processing is the same. As a result of such post-

processing a simulation table was obtained that is shown on Table 3. 
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Table 3. Data obtained by simulating in the Hartley basis for the energy spectral density func-

tion based on the real-world data 

Programs BSTU USPTU … UrFU VSU 

Automation and control 82.785 0 … 79.721 0 

Aviation and space 

instrumentation 

0 0 … 0 0 

Business Informatics 0 72.259 … 0 0 

… … … … … … 

Information Security 77.039 0 … 73.975 0 

Nuclear physics and 

technology 

0 0 … 0 0 

Technological ma-

chines 

0 72.989 … 0 0 

 

Let’s compare graphical representations of the data. Figure 8 shows the original data 

for 2021 (8a) and the simulated data after post-processing (8b). 

a) 

 

b) 

 

Fig. 8. Graph of the original data matrix for 2021 (a) and a graph of the Hartley simulated and 

adjusted data matrix (b) 

The discrepancy mentioned in the case of the Fourier simulation remains for the Hart-

ley simulation too. The amount of zeroes increased noticeably. Directionality of the 

data is preserved. The average difference after post processing is 11.6539. The differ-

ence across 500 experiments with different random coefficients is 9.4748. 

4 Conclusion 

The proposed technique includes extracting energy spectral density function and 

phase density from data or signals. Simulation yields signals or data where some sta-

tistical characteristics of the original are repeated, namely, most non-zero values are 

spanned across same axis both in the original and in the simulation. That and arguable 

arbitrariness to the post processing used should be discussed with experts in the field. 

The average differences between the simulated and original data are quite significant 

and are around 8.834% of the maximal value in the original data. Very small piece of 
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the original data was used and further progress demands expanding it. Statistical char-

acteristics of generated signals may fit different fields or tasks better therefore other 

two-dimensional data must be inspected including images and graphs which can too 

be presented as two-dimensional matrices [16, 17]. 
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