
Segmentation of graphical user interface elements based

on topological decomposition for GUI testing tasks

Artyom Abakumov 1[0000-0001-5784-7147] and Sergey Eremeev1[0000-0001-8482-1479]

1 Murom Institute of Vladimir State University, Russia
artem210966@yandex.ru

sv-eremeev@yandex.ru

Abstract. The paper addresses the issue of automating the testing process for

graphical interfaces. It is shown that one of the main tasks in this area is seg-

mentation of screen elements with further construction its internal structure.

Emphasis is placed on the stability of the proposed method, regardless of

changes in interface layout or the operating system employed. Our approach is

based on decomposing a window screenshot into specific components that cor-

respond to the elements of the original window and their hierarchy. We demon-

strate the method's resilience to the resizing of objects within windows. The re-

search was conducted using interface element segmentation for the QGIS geo-

graphic information system on both Windows and Ubuntu operating systems.

Experimental results revealed high levels of accuracy, ranging from 94 to 100

percent, in extracting segmented areas within QGIS windows .

Keywords: topological analysis, GUI testing, segmentation.

1 Introduction

The number of software programs continues to grow annually, and the quality of

these applications is directly tied to the effectiveness of testing. While various types

of automated testing exist to verify program functionality by executing code and vali-

dating its results, developers encounter difficulties when it comes to testing the graph-

ical user interface (GUI) of applications.

There are testing utility that extracts meta-information about buttons, fields, and

other interface elements. But, unlike regular code, the rendering of graphics in GUIs

is reliant on the underlying operating system. Consequently, new frameworks and

libraries for creating GUIs are constantly being developed and improved. Updates to

these frameworks or changes in modules can break working this meta-extracting up-

tilts. In some cases, vendors intentionally restrict or complicate the extracting meta-

information to enhance protection against reverse engineering. These and other sce-

narios necessitate the use of methods that do not rely on a deep understanding of the

rendering approach or operating system, but instead interact with the interface

through computer vision.

mailto:artem210966@yandex.ru

2

The task at hand involves identifying the desired interaction elements and validat-

ing their response to specific actions. For instance, one might need to click a button

and ensure that a modal window opens. The typical solution in the computer vision

approach involves performing a screenshot to locate the button for subsequent testing.

Also, it is crucial to note that recognition errors are not permissible in this case, given

the nature of the task.

Although it may appear that the problem could be solved by employing straight-

forward pixel-by-pixel comparison algorithms, in practice, program elements can

exhibit slight variations in their rendering across different systems and machines.

There are two primary challenges associated with this issue. Firstly, in diverse envi-

ronments, windows may stretch, resulting in distorted displays of elements. Secondly,

font glyphs can be rendered differently on various systems, and at times, a program

may employ similar but distinct fonts on different operating systems. The disparity in

GUI rendering is illustrated in Figure 1. Even if primitive methods attempt to ignore

the differing parts, they have proven ineffective.

 (a) (b)

Fig. 1. Different font and buttons in QGIS on Windows (a) and Ubuntu (b) systems.

These distortions not only add complexity to the testing process but also contribute

to increased costs, highlighting the necessity for a method that can deliver consistent

results while being resilient to such distortions. The primary focus of this work is to

address this practical problem effectively.

In this paper, we present a new approach for decomposing application screenshots

and propose a testing scheme built upon this approach.

2 Motivation

One of the main problems associated with open-source software is the issue of quali-

ty. Many developers contribute to open-source projects as a hobby and may not have

the inclination to invest a significant amount of time in GUI testing. Consequently,

there is a pressing need to develop a methodology that is straightforward and accessi-

ble to ordinary developers, without necessitating manual adjustments for different

platforms.

3

To address this issue, it is logical to employ a method that not only compares im-

ages but also enables automatic highlighting of interactive GUI elements. This would

allow users to select the desired interaction element without having to create a screen-

shot of it. One such method is the decomposition of images into topological features,

which satisfies the requirements.

The technique for decomposing an image (screenshot) into components that identi-

fy high-frequency and low-frequency objects will be described in detail later. For

now, it is sufficient to understand that this method enables the identification of all

"disturbances" in the image, which are then represented as components. These com-

ponents form a hierarchical structure, akin to a tree-like graph. Consequently, access-

ing an element becomes possible by traversing a component path in the Decomposi-

tion Tree, like selecting elements in XML or HTML schemas. The process of creating

a test using this method is depicted in Figure 2. It is necessary to note that in a real

scenario keyboard actions are also included in the testing process. But, since our goal

is to test the GUI, we will not take keyboard actions into account.

Fig. 2. Test creation scheme.

The Decomposition Tree comprises components along with their associated

metadata, including the start and the end times of existence, as well as decomposition

matrices. Depending on the specific task, additional metrics can be incorporated as

needed. A notable advantage of this method is that the size of the tree is significantly

smaller than that of the source image.

During the execution of the created test (as depicted in Figure 3), the saved Test

Stack is utilized.

4

Fig. 3. The scheme of the testing procedure (performs automatically).

The test will launch the program automatically and construct the decomposition

based on a captured screenshot. This fully automated testing process, reliant on the

decomposition technique, will be accomplished as a result.

3 Review

Testing utilities can be categorized into two main approaches based on their opera-

tional principles: black-box and white-box testing.

White-box testing involves assessing the internal structure and logic of the system

rendering. It enables the determination of element coordinates, states, data, properties,

and more in real-time. This approach offers high accuracy and simplicity. However, it

requires the development of separate utilities for each graphical library and is highly

dependent on the specific libraries and system being utilized, as mentioned previous-

ly.

Black-box testing involves testing a system without considering or having

knowledge of its internal workings. It primarily focuses on the external behavior and

functionality of the system. Implementations of this technique execute actions, such

5

as moving the cursor or clicking, in a predefined order. Black-box testing allows for

independence from specific technologies or systems but can potentially result in

blind-running, where errors or issues may go unnoticed. For example, if there is a

missed click, the testing program may continue the test without detecting the error.

These situations are mitigated in the white-box approach.

If we narrow down the classification and deviate from abstract concepts, testing

methods can be categorized based on the interaction with a test application. One fun-

damental method is the coordinate-based approach, where a tester specifies coordi-

nates to which the cursor should be directed. However, it is important to consider that

all coordinates may need to be adjusted in the event of distortions, such as changes in

the size of elements. Autopy and PyAutoGUI are examples of utilities that facilitate

such operations.

A more reliable method for testing is image recognition, which has been previously

discussed. Examples of applications that employ this approach include Sikuli and

Lackey.

Furthermore, the most reliable yet complex approach is the Accessibility method.

This method pertains to white-box techniques that possess access to the internal ele-

ments of the system. An example of a popular solution in this domain is Pywinauto.

However, it is worth noting that Pywinauto is exclusively compatible with Windows,

rendering it unsuitable for cross-platform applications.

The underlying principle of these utilities predominantly relies on macros, which

involve the repetition of pre-defined actions. One variation of this approach, referred

to as keyword testing, is widely implemented in numerous popular tools like Katalon

Studio and Jubula.

Webpages present the simplest case for testing due to their open code nature. Nu-

merous programs are available specifically designed for web testing, with Selenium

being a notable example.

Scientific papers addressing GUI testing started appearing as early as the 1990s, as

mentioned by the authors in [1]. These researchers extensively publications on the

subject and their achievements. The recent study [2] has demonstrated that despite

significant advancements in recent years, numerous challenges persist without resolu-

tion and are anticipated to persist into the future. This emphasizes the significance of

further research in this area.

Researchers propose various approaches to address the challenges of GUI testing.

They explore different fields, such as security aspects in GUI testing [3]. Other re-

searchers focus not only on the means of interacting with the program but also on the

issue of test coverage. They explore methods to improve test coverage. In the study

[4], the authors present existing tools for automated testing and the detection of un-

tested elements and UI states. They propose a new method and its implementation for

identifying potential states of elements, which involves computing all possible com-

binations of interactions with the application. However, the authors also acknowledge

the limitations of the method, which further supports the claims made in the first re-

view papers.

Scientific literature recognizes the significance of resource constraints in frequent

software releases. The optimization and acceleration of testing in systems with realis-

6

tic graphics are discussed in [5]. The paper describes existing approaches and pro-

vides a demonstration of the process using specific technologies.

Also, it is important to consider other systems such as smartphones. Mobile appli-

cations, which are prevalent in today's technological landscape, heavily rely on GUIs,

making the discussed problem of GUI testing even more relevant in this context.

In [6], the authors highlight a common issue with testing tools that often rely on

static GUI models, which may lack accuracy. To address this, the authors propose a

novel approach where the GUI model is dynamically optimized during program exe-

cution. It is worth noting that many modern smartphone applications utilize web tech-

nologies, effectively functioning as miniature browsers with web pages. This presents

an opportunity to leverage existing tools used for testing websites, thereby warranting

further exploration of existing works in this particular area.

Methods for improving the testing of web pages based on their HTML are present-

ed in [7]. The authors propose two versions of their method: one focuses on generat-

ing test cases for each web element, while the other explores different paths between

web elements. These approaches aim to address the issue of insufficient test coverage

and improve the overall testing process for web pages.

When considering papers closely related to the problem, it becomes evident that

many of them are focused on mobile applications, thereby supporting our previous

thesis. An intriguing work in this regard is [8], where the authors tackle the same task

by detecting interactive elements and utilizing them for testing through the Accessi-

bility methodology. They employ a trained computer model to identify interaction

elements within mobile applications and describe their approach as comprehensive in

their conclusions. However, it is worth noting that the use of machine learning con-

fines the research to the realm of mobile applications exclusively. A similar issue,

with a greater emphasis on training neural networks, is addressed in [9], also focusing

on mobile applications. This trend is further exemplified in [10], where the authors

employ machine learning techniques to enhance the existing methodology of random

GUI testing.

In general, there is a noticeable trend in scientific papers towards the application of

machine learning, particularly neural networks. For instance, some of the previously

mentioned works utilize the popular YOLO v3 system, which not only segments but

also classifies objects. However, it is important to note that despite the prevalence of

neural networks in research, their practical adoption in existing testing utilities is not

widespread. This is likely due to the significant overhead costs associated with re-

source-intensive classifiers. In practical terms, the usage of neural networks often

involves cloud technologies, which introduces complexities and increases the cost of

GUI testing.

If we consider the body of this chapter, it becomes apparent that there is a multi-

tude of approaches for testing mobile applications, while there seems to be a relative

lack of new ideas specifically focused on desktop applications. This observation fur-

ther underscores the relevance of the problem we have chosen to address.

The decomposition method has demonstrated successful applications in satellite

image segmentation [11] and object classification in images [12]. Therefore, it can be

7

reasonably asserted that in simpler cases, it will yield results no less satisfactory than

those achieved in the aforementioned articles.

4 Methodology

4.1 Decomposition of Interface Elements Based on Topological

Features

The main principle employed in persistent homology is the systematic traversal of

a point cloud and the construction of simplex complexes based on it. In our specific

case, the image (matrix) functions as the point cloud, while the components, com-

posed of pixels with distinct brightness values, act as the simplex complexes. Conse-

quently, this enables us to establish a comprehensive framework for constructing

components (Equation 1) and representing complexes (Equation 2).

𝑀 = {𝐶1, 𝐶2, . . . , 𝐶𝑛 } = 𝐹𝑀(𝐼), (1)

where 𝑀 is a set of output components, 𝐶 is a component, 𝐹𝑀is component creation

functions, and 𝐼 is an input image.

𝐶 = {𝑏1, 𝑏2, . . . , 𝑏𝑘}, (2)

where 𝑏 is a pixel brightness, 𝐶 ∈ 𝑀 and 𝑘 is a number of component points.

From Equation (2), we can derive various persistent features of a component.

These include the brightness values of its start and end (Equations 3 and 4, respective-

ly), the duration of its existence (Equation 5), and the square it occupies (Equation 6).

𝑃𝑠𝑡𝑎𝑟𝑡 = 𝑚𝑖𝑛 {𝑏1, 𝑏2, . . . , 𝑏𝑘} (3)

𝑃𝑒𝑛𝑑 = 𝑚𝑎𝑥 {𝑏1, 𝑏2, . . . , 𝑏𝑘} (4)

𝑃𝑙𝑒𝑛𝑔𝑡ℎ = 𝑃𝑒𝑛𝑑 − 𝑃𝑠𝑡𝑎𝑟𝑡 (5)

𝑃𝑠𝑞𝑢𝑎𝑟𝑒 = |𝐶| (6)

The features can be used to uniquely identify an individual component among the

entire set.

In the paper [13], several approaches to constructing components are described.

The simplest method involves analyzing pixels from top to bottom (from 255 bright-

ness to 0) or from bottom to top. These two approaches we mark as base ones.

The base method connects pixels in a certain order. First, they are sorted by bright-

ness and then added to the pad by X and Y indices. If there is another pixel next to the

added pixel, they are joined into a component. If there is a component next to it, the

pixel is joined to it. If a pixel can be attached to several components at once, one ab-

sorbs the other. The absorbed one does not grow any more.

The base methods only segments either bright or dark regions. Since interfaces can

consist of various shades, it is necessary to perform two passes — one from top to

bottom and another from bottom to top — to capture all interaction zones and accu-

rately segment the components.

The bottom-up method iterates through all the pixels in ascending order of their

brightness and analyzing the surrounding area. If there are no nearby components, a

new component is created. If there is an existing component nearby, the current point

merges with it, forming a larger component. If two components are found adjacent to

8

each other, the older component assimilates the younger one. The younger component

is designated as a child of the older component, resulting in a hierarchical, tree-like

structure. One important feature of the decomposition is independent of the scale and,

accordingly, of the resolution of the image.

The construction process for the window depicted in Figure 4 is illustrated in Fig-

ure 5 as an example.

Fig. 4. A simple window with two tabs and two buttons.

 (а) (b) (c) (d)

Fig. 5. Bottom-up construction. Pixels are stored in sorted order and added based on the in-

creasing value of their brightness, b. Each displayed element represents a component.

The construction process begins by connecting all pixels with a brightness of zero,

as shown in Figure 5(a). The adjacent pixels form separate components, representing

the letters and the symbol in the top left corner. Then, the process continues by con-

necting pixels with a brightness of 1, and this progression continues for subsequent

brightness levels. In Figure 5(b), at brightness level 179, the components representing

the letter "B" absorb the pixels of the buttons. Finally, the same process occurs with

the tab component labeled as "T1".

The example clearly demonstrates that some information is lost during the con-

struction process. To recover this lost information, an additional pass from brightness

255 to 0 is required. However, this approach is inefficient. Therefore, it is advisable to

further develop the algorithm to prevent information loss and aim for achieving accu-

rate results in a single pass. This can help improve the efficiency and effectiveness of

the component construction process.

One possible modification is to alter the order of pixels connections. Based on our

experiments, the most promising approach is to connect points in pairs, considering

the increasing difference in brightness, denoted as 𝐷, between them. The visualization

9

of this method, along with the graph construction for the window depicted in Figure

4, is illustrated in Figure 6. We mark this version as the new method and named it as

Radius-Based (RB).

Fig. 6. Constructing components in the order of increasing difference (𝐷) between

pixels.

The RB method is predicated on connecting the closest points in terms of bright-

ness. Initially, all pixels with zero brightness are connected, creating the first compo-

nents. As the difference in brightness between other pixels becomes smaller than a

threshold value, 𝐷, they are connected, with one component absorbing the others,

forming a tree-like structure. In the considered case, there are the buttons, letters, and

tabs in Figure 6. Their average brightness is close to 0. As the brightness approaches

170, the difference in brightness between the button component and the symbols "B",

"1" and "2" exceeds the threshold 𝐷. As a result, the largest component (the button)

absorbs the smaller ones (the symbols "B", "1", "2"), creating a hierarchy. The same

process occurs with the remaining components. Closer to a brightness of 200, larger

components start merging, forming an even more visible hierarchy. This process con-

tinues until all components form a tree.

To summarize, the new approach localizes the zones by the nearest brightness be-

tween points, which, given the specifics of the task, was the best fit. The results

demonstrate that this modified approach achieves a more accurate segmentation. The

one more advantage of the new approach is ability to use RGB colors because we sort

pixels not by brightness, but by distance. RGB represents a vector (Red, Green, Blue),

making it easy to calculate the distance. The bottom-up and up-bottom methods re-

quire grayscale pixels. In the paper, we will utilize the new approach to process the

colored images.

10

4.2 Filtering Components for Obtaining Segmented Interface Elements

Certainly, filtering is an important step in the process. First and foremost, it is nec-

essary to discard the text as it is not considered an interactive element. Let's consider

Figure 7 for further analysis.

(a)

(b)

Fig. 7. The source "Clip" window (a) in QGIS and the components constructed based

on it (b).

It is necessary to impose restrictions on certain features to filter the letters. Initial-

ly, we utilize the simplest one, the square of the component (𝑃𝑠𝑞𝑢𝑎𝑟𝑒) which is calcu-

lated by formula (6). The resulting filtering outcome is presented in Figure 8. Some

letters and intermediate components remain. To further refine the filtering process, we

employ another feature, the existence length (𝑃𝑙𝑒𝑛𝑔𝑡ℎ) of a component, calculated

using formula (5). We will limit its maximum value. The result is displayed in Figure

9.

11

Fig. 8. The segmentation result with 𝑃𝑠𝑞𝑢𝑎𝑟𝑒 >= 100

Fig. 9. The segmentation result with 𝑃𝑙𝑒𝑛𝑔𝑡ℎ >= 10 and 𝑃𝑠𝑞𝑢𝑎𝑟𝑒 >= 100.

The artifacts have been successfully eliminated, and the segmentation has signifi-

cantly improved. Although there are a few misclassifications where some letters and a

portion of the button were mistakenly highlighted, however, they do not have a signif-

icant impact on the overall result.

Another way to perform filtering is by using the component path. This means that,

like the testing process, specific elements can be indicated to be discarded and not

considered when comparing the tree structure.

5 Results

Unfortunately, there are no public ready-to-use datasets for desktop GUI testing.

The closest ones contain screenshots of mobile applications, which makes it difficult

to verify the method. So, it was decided to compile its own set of test data.

So, there is a popular open-source solution called QGIS, which provides a graph-

ical interface for working with geospatial data, such as GDAL library integration.

However, in practice, bugs are often encountered, which makes many GUI windows

12

useless. A variety of different windows can be utilized to test the decomposition

method.

Typically, the following elements are used by the QGIS windows:

• Tab Panel: a container with other elements;

• Tab: an inactive tab;

• CheckBox: allows selecting either True or False;

• ComboBox: enables selecting from multiple items;

• InputBox: allows input of numbers and text;

• Button: a clickable button;

• MultiLine TextBox (Read only): an element for displaying text.

Visually, all these elements and their highlighting are shown in Figure 10.

Fig. 10. The highlighted elements with labels.

Thirty QGIS windows were taken for testing purposes, and decomposition was per-

formed on them using the criteria 𝑃𝑠𝑞𝑢𝑎𝑟𝑒 >= 100 and 𝑃𝑙𝑒𝑛𝑔𝑡ℎ >= 10. The accura-

cy results, reflecting the found/total ratio, presented in Table 1. It is worth noting that

sometimes buttons can be disable, and these cases accounted for a 6% decrease in

accuracy. However, determining whether an inactive element should be identified

remains a matter of debate.

13

Table 1. Accuracy results in Percentage, verified by a practicing GUI tester.

Type Accuracy, %

Tab 98

ComboBox 94

Tab Panel 97

InputBox 100

CheckBox 100

Button 94

MultiLine TextBox 100

It is also important to note the errors. Table 2 indicates the number of letters that

mistakenly entered the Decomposition Tree (i.e., remained after filtering), and the

number of artifacts representing incomplete or incorrect segmentation of elements.

Table 2. Decomposition errors.

Letters Artifacts

67 14

The letters only affect the size of the tree and do not pose problems for segmenta-

tion. Artifacts, on the other hand, can impact accuracy. To reduce these issues, it is

necessary to refine the filtering process or improve the mechanism for constructing

components in the case of artifacts.

Additionally, the method was tested on a variety of other applications. For exam-

ple, we demonstrate the complete decomposition of a Visual Studio Code window in

Figure 11. The library is written in C++. Without additional optimizations, it takes

approximately ~1000 milliseconds to decompose a 1920x1080 screenshot on an In-

tel(R) Core(TM) i5-8300H CPU @ 2.30GHz.

Fig. 11. The VS Code windows with highlighted elements.

14

6 Conclusions

The study results highlight the importance of further refining the filtering mecha-

nism and utilizing more reliable indicators. However, apart from that, the segmenta-

tion results are promising, with an average accuracy exceeding 95 "The decomposi-

tion library is available on GitHub: https://github.com/Noremos/SatHomology.

In conclusion, the topological decomposition method has proven to be effective in

detecting interactive zones. It provides the advantage of disregarding potential distor-

tions, such as element stretching and variations in the rendering of glyphs and interac-

tion elements.

Acknowledgements: This study was supported by the Russian Science Founda-

tion, project no. 23-21-10064, https://rscf.ru/en/project/23-21-10064/.

References

1. Banerjee, I., Nguyen, B., Garousi V.: Graphical user interface (GUI) testing: System-

atic mapping and repository. Information and Software Technology, 55(10), 1679-1694

(2013).

2. Nass, M., Alégroth E., Feldt R.:Why many challenges with GUI test automation (will) re-

main. Information and Software Technology, 138 (2021)

3. Mironov, S.: Technologies of security control of automated systems based on structural

and behavioral testing of software. Cybernetics and programming, 5, 158-172, (2015).

4. Vartanov, S., Gerasimov, A, Ermakov, M., Kutz, D., Novikov, A.: Dynamic analysis of

programs with graphical user interface based on symbolic execution. Proceedings of the

Institute for System Programming of the RAS (Proceedings of ISP RAS), 29(1), 149-166

(2017).
5. Denisov, E., Voloboy, A., Birukov, E..: Technologies for automatic testing of a software

package for realistic computer graphics. Proceedings of the Institute for System Program-

ming of the RAS (Proceedings of ISP RAS), 32(1), 71-88 (2020).

6. Gu, T.: Practical GUI Testing of Android Applications Via Model Abstraction and Re-

finement. 2019 IEEE/ACM 41st International Conference on Software Engineering

(ICSE), pp. 269-280 (2019). Montreal, QC, Canada.

7. Medhat, M., Saad, M.: Enhancing the Automation of GUI Testing. In Proceedings of the

8th International Conference on Software and Information Engineering (ICSIE '19). Asso-

ciation for Computing Machinery, pp. 66–70 (2019). New York, NY, USA.

8. Zhang, X., Lilian de Greef, Swearngin, A., White, S: Screen Recognition: Creating Acces-

sibility Metadata for Mobile Applications from Pixels. arXiv (2021)

9. Xue, F., Wu, F., Zhang, T.: Visual Identification of Mobile App GUI Elements for Auto-

mated Robotic Testing. Computational Intelligence and Neuroscience, 1, 1687-5265

(2022).

10. Thomas, D., White, G., Guy J.: Improving random GUI testing with image-based widget

detection. In Proceedings of the 28th ACM SIGSOFT International Symposium on Soft-

ware Testing and Analysis (ISSTA 2019), 307–317 (2019). New York, NY, USA.

11. Eremeev, S., Abakumov, A., Andrianov, D., Shirabakina, T.: Vectorization Method of

Satellite Images Based on Their Decomposition by Topological Features. Informatics and

Automation, 22(1), 110-145 (2023).

https://rscf.ru/en/project/23-21-10064/

15

12. Eremeev S., Abakumov A.: Classification of objects in images with distortions based on a

two-stage topological analysis. Scientific and Technical Journal of Information Technolo-

gies, Mechanics and Optics,.22(1), 82–92 (2022).

13. Eremeev, S., Abakumov, A., Andrianov, D., Titov, D.: Image decomposition method by

topological features. Computer Optics, 46(6), 939-947 (2022).

