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In recent years, neural networks have gained recognition for their potential in

solving information technology problems. However, their training process demands

significant computational resources, leading to the emergence of cloud-based ser-

vices as a solution. Nevertheless, these services also introduce new cybersecurity

risks. This research investigates a novel attack method that exploits neural net-

work weights to distribute hidden malware. By strategically embedding malware

within the network’s weight parameters, it becomes possible to discreetly transmit

malicious code, evading detection by traditional antivirus and steganography tech-

niques. The study explores seven distinct methods for embedding and activating

malware in neural networks and examines four trigger types for initiating malware

activation. Additionally, the paper presents a new open-source framework that offers

pre-built implementations of these methods. This framework facilitates automated

code injection into the weight parameters of neural network models. Rigorous test-

ing has confirmed its effectiveness and reliability, enabling researchers to delve into

this emerging attack vector and develop countermeasures.
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I. INTRODUCTION

The remarkable progress and widespread implementation of machine learning in diverse

domains have raised important questions regarding the security and reliability of machine

learning models[1, 2].
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One of the main security issues in machine learning is the vulnerability of models to all

kinds of attacks[3, 4]. A new trend in modern machine learning systems is the increasing

number of attacks aimed at introducing malware into neural networks[5–7]. This form of

attack poses a serious threat to the security and reliability of models, as attackers can

use them to perform malicious actions, bypassing traditional security mechanisms. Such

attacks can lead to covert activation of malicious features, leakage of sensitive information,

or misclassification of data, undermining accuracy in machine learning models[8]. Therefore,

understanding, detecting, and defending against attacks of introduction malware into neural

networks are becoming important cybersecurity challenges.

Malware infiltration techniques are used when supplying off-the-shelf models to the end

user via MLaaS (Machine Learning as a Service) services[9]. Often consumers who are not

machine learning experts work with MLaaS series without an understanding of learning,

testing, and data processing. As a rule, the most important criterion for such users is the

accuracy of the model. An attacker can take advantage of this and inject malware into the

deep neural network model without the user’s suspicion.

An overview of methods for injecting malware directly into machine learning models is

given in our paper [10].

II. PROBLEM STATEMENT

The goal of this paper is to study and analyze machine learning attacks focused on

introducing malicious code into neural networks by developing a specialized framework[11]

that automates the process of introducing malicious code into neural network weights[12].

This framework allows researchers and specialists to experiment and test the robustness

of their machine learning models and develop and apply countermeasures to defend against

such attacks. The framework provides flexibility and scalability, allowing for customization

and adaptation of malware injection methods depending on specific requirements and usage

scenario.

By conducting an in-depth analysis of existing methodologies and exploring software

implementation approaches, this paper aims to contribute to the field of machine learning

security and provide practical insights into protecting machine learning models from code

injection attacks on model weights.
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In the following sections, we will delve into the theoretical background, research method-

ology, and experimental evaluation of the proposed framework with the ultimate goal of

improving the security and reliability of machine learning systems.

III. METHODOLOGY

FIG. 1: General user and attacker interaction scenario.

The figure 1 illustrates a typical scenario involving the interaction between a user and an

attacker. In this scenario, a user, who intends to utilize a neural network model for business

purposes, initiates the process by selecting the desired model architecture. Subsequently,

the user proceeds with training the model using MLaaS providers or obtains a pre-trained

model from various sources.

In the specific scenario where the attacker assumes the role of an MLaaS service, it is

assumed that the attacker does not possess the capability to modify the architecture of the

resulting neural network. However, the attacker retains the ability to manipulate the weight

parameters of the network. This allows the attacker to introduce malicious modifications to

the model without altering its fundamental structure.

In order to implement all the goals, the attacker needs to perform the steps according

to the figure 1. In this process, the attacker begins by acquiring a neural network model,
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which can either be provided by the user or designed by the attacker themselves. They then

proceed to train the model to the desired level of accuracy, a step that can be executed by

the attacker or outsourced to MLaaS providers. Following successful training, the attacker

prepares and introduces the malware into the model while monitoring and controlling the

loss of model accuracy, using methods detailed in this paper. To deploy and activate the

malware, the attacker creates a trigger, employing techniques discussed within the same

research. Once the model is fully prepared, the attacker can employ additional techniques,

such as ”chain pollution”[13], to disseminate it to public repositories or other locations.

Next, the user gets his neural network with embedded malware, which will be extracted

and run, when the trigger is activated.

IV. METHODS OF INTRODUCING MALWARE

A. Introducing malicious bytes into neurons

According to the IEEE[14] standard, a floating-point number is 32 bits wide, where the

first bit is allocated for the sign of the number, the next 8 bits are allocated for the exponent,

and the last 23 bits are the mantissa. The result is the number ±1.m× 2n in binary form,

where m is the mantissa of the number, n is the exponent. Such a number belongs to the

range from 2−127 to 2127 − 1. Its exponent is responsible for its magnitude, i.e. by keeping

the first few bytes of the number, the remaining part can be replaced by malware bytes,

keeping a small difference with the original number.
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B. StegoNet methods

The article StegoNet[5] suggests four methods of introducing malware. Let’s review them.

a. LSB substitution

This approach is based on the use of LSB (Least Significant Bits) replacement[7] as

employed in steganography techniques[15]. It involves selecting the number of neurons and

parameters that will accommodate the malware. The malware’s total bit-length is divided

into segments, each aligned with the chosen LSB substitution length, and these segments

are then written to the initial parameters of the model. Subsequently, the remaining model

parameters are used to store the complete malware code.

This solution is not applicable to highly compressed neural network models. For example,

the MobileNet[16] size is only 4 MB with 4 million 8-bit parameters. These compressed

models quickly lose accuracy even with minor parameter changes. This method is not

suitable for compressed models.

b. Resilience training

Removal of some set of neurons from the topology of neural network model can lead to a

significant decrease in the accuracy, but the parameters connecting the remaining neurons

can be adjusted (retrained) to achieve the original accuracy. Based on this intuition, the

Resilience training technique was proposed.

As shown in figure 2a, the method implies a direct replacement of all bits of the selected

parameters with malware segments. Such neurons (i.e. with modified parameters) will not

be updated during retraining. It is expected that after training, the accuracy of the model

will be restored, which will allow to hide the presence of injected software.

c. Value mapping

Suppose we have a model with 8-bit fixed-point numbers with 6 bits after the decimal

point. To facilitate value comparison, the binary code of the malware is initially divided into

segments of a length corresponding to the number of bits after decimal point. Then, for each

segment, a full exhaustive model parameter search is performed to match (or replace) the

same (or close) value of the fractional parameter bits, as an example, shown in 2b.Finally,

we map the code segment to the corresponding parameter, replacing the fractional bits of

the parameter with the code segment if necessary.

d. Sign mapping
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The sign-matching method uses a similar ”full search and match” rule based on the sign

bit of the model parameters. As shown in 2c, sign matching will go through the model

parameters and map a parameter sign bit to each individual bit in the malicious code, for

example 0 is mapped to a + parameter sign, thus ultimately mapping the code to a sequence

of sign bits for the corresponding parameters. It is necessary to keep a vector of mapped

parameters.

C. EvilModel methods

The article EvilModel[6] proposes three other methods. Let’s review them.

a. MSB reservation

Since the most important exponential part of the parameter is mostly in the first byte, the

first byte is the most significant byte for determining the value of the parameter. Therefore,

it is possible to leave it unchanged and inject the malware into the next three bytes. Thus,

the parameter values are still within reasonable limits.

b. Fast substitution

If we replace the parameters with three bytes of malware and the first byte of prefix

0x3C or 0xBC based on the parameter sign, most parameter values would still be within

reasonable limits. Compared to the MSB method, this method may have a greater impact

on model performance, but since it does not need to parse parameters in the neuron, it will

run faster.

c. Half substitution

Similar to the MSB reservation, if you keep the first two bytes unchanged, instead of one,

and change the other two bytes, the value of that number will fluctuate in a smaller range.

However, since only two bytes are replaced in the parameter, this method can introduce less

payload than the previous two methods.

V. COMPARISON OF EMBEDDING METHODS

Let’s compare the accuracy of different models before and after the implementation of all

the methods above. See [5, 6] and the table I.

As you can see from this table, the naive LSB replacement method can maintain good test-
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ing accuracy on medium neural networks; this fact does not apply to small neural networks.

For example, it leads to a significant decrease in accuracy (i.e., a sharp drop to ≈ 0.1%) in

high compression neural network models due to limited data accuracy and reduced number

of parameters.

In contrast, Resilience training can relatively better support malware input on small neu-

ral networks. For small malware such as EquationDrug, ZeusVM, and Cerber[17], it can

maintain testing accuracy at the same level as the original, even in the smallest MobileNet[16]

(4.2 MB) and SqueezeNet[18] (4.6 MB). However, MobileNet’s accuracy dropped signifi-

cantly from 66.7% to 0.7% as the malware size increased from 0.59MB (Cerber) to 3.35MB

(WannaCry). It can be observed that the upper bound of the malware-to-model size ratio

for the Resilience training method is ≈ 15% without a decrease in accuracy.

However, such a problem has been eliminated with methods based on ”full search and

mapping”. For highly compressed neural network models such as ”Comp.Alexnet”[19], the

model parameters are extremely compressed, the method may be less efficient for such

models, i.e. the parameters are also compressed. A similar tendency can be found in the

Sign mapping methodIn general, however, Sign-mapping can always maintain the original

testing accuracy for all applicable cases.

For the MSB reservation method, due to the redundancy of neural network models, when

malware is embedded, testing accuracy is unaffected for models of large size (>200MB).

Accuracy increased slightly in some cases (e.g., Vgg 16[20] with NSIS), as also noted in

Stegonet [5]. When malware is implemented using MSBs, accuracy decreases as the size of

the embedded malware increases for medium- and small-sized models. For example, accuracy

decreases by 5% for medium-sized models such as Resnet50 with Mamba. Theoretically, the

maximum order of embedding (i.e., the ratio of malicious code size to model size) of the

MSB reservation method is 75%. In the experiment, the upper bound of the embedding

order without a significant decrease in accuracy is 25.73% (Googlenet with Artemis).

The performance of the Fast substitution method is similar to the MSB reservation

method, but unstable for small models. When larger malware is introduced into a medium-

or small-sized model, the accuracy of the model decreases significantly. For example, for

Mobilenet with VikingHorde, testing accuracy drops dramatically to 0.108%. This shows

that fast substitution can be used as a substitute for the MSB reservation method when

the model is large or the task is time-consuming. In the experiment, the embedding order
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turned out, without a significant decrease in accuracy, to be 15.9% (Resnet18 with Viking

Horde).

The Half substitution method outperforms all other methods. Due to the redundancy

of neural network models, the accuracy after embedding all sizes of code practically does

not degrade, even when almost half of the model has been replaced with malicious bytes,

the accuracy varies within 0.01% of the original. A small Squeezenet size (4.74MB) can

embed a 2.3MB Mamba virus sample with accuracy increasing by 0.048%. Theoretically,

the maximum order of embedding is 50%. In the experiment a close to theoretical value of

48.52% was achieved (Squeezenet with Mamba).

VI. METHODS OF MALWARE ACTIVATION

A. Triggers

The StegoNet article suggests three different triggers: Logits trigger, Rank trigger, Fine-

tuned Rank Trigger.

The Logits Trigger method involves memorizing the logits outputs for certain input data

- triggers. Then, when one of the inputs we have chosen as a trigger is fed, the outputs of

the logits will match, and the malicious code will be extracted and activated. In theory,

this is not possible, because there is a very small chance of feeding exactly the same input

sample, and the logit outputs (floating-point numbers) must match completely.

Therefore, the Rank trigger method would be more useful. The difference is to compare

logit outputs instead of their ranks, i.e. indexes in a sorted array of logits. For example,

let the last layer have dimension 3 and the logit output is {p1, p2, p3} = {0.5, 0.2, 0.4}. But

because of the variety of inputs, we got the output {0.55, 0.13, 0.42}. The logit ranks will

be r = {p1, p3, p2}, and they will coincide.

The Fine-tuned Rank Trigger method involves selecting a triggered input sample, aug-

menting it with various variations, and retraining the model on these augmented samples.

However, instead of using the original loss function that depends on logit values, the loss

function based on logit ranks is employed. To do this, we will have to manually set the

target value of logit ranks. Let x be the augmented input data, hr be the logit rank label
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set to it, if no logit is considered its value is set to 0.

argmin
w

1

n

n∑
1

L(fw(x), hr).

After the trigger is activated, the malware is assembled into a single code. Its hash sum

is then compared with the pre-stored hash sum of the unsegmented malware. If they match,

the malware is launched.

B. Activation

If the neural network model is accompanied by third-party software, such as a model ex-

ploitation program, then all the necessary code for checking triggers and activating malware

on the target device can be injected into it. This is the simplest case, let’s look at the others.

We first assumed that the model is trained on an untrusted source, i.e., an attacker, and

he has all the model data, a white box attack. The model is passed through the network in

serialized form[21], then deserialized. With an attack like ”insecure deserialization”[22, 23],

the attacker can modify the activation functions in the model. For example, instead of

softmax use a modified version with trigger checking and malware deployment.

Another approach is to exploit vulnerabilities in libraries and executable environments.

For example CVE-2018-6269, CVE-2017-12852.

VII. FRAMEWORK

A. Review

The goal of our framework[11] is to develop an off-the-shelf solution to the malware

embedding into neural networks, allowing malicious code to be integrated seamlessly into

the network architecture. Using the unique characteristics of neural networks and their

widespread use in various applications, our framework aims to explore the potential risks

and vulnerabilities associated with these models.

Our framework provides a comprehensive solution that allows researchers and security

professionals to study the behavior of neural networks when exposed to embedded malware.

This opens the door to analyzing the impact of malicious attacks on network performance,

identifying vulnerabilities and developing robust defense mechanisms.
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Key Features:

1. Introduction of malware: Our framework incorporates various techniques for intro-

ducing malware into the neural network structure by changing its weighting factors,

providing seamless integration without compromising the overall functionality of the

network.

2. Evaluation opportunities: Our platform provides tools to assess the impact of

embedded malware on network performance, i.e., accuracy degradation metrics.

3. Flexibility and compatibility: The framework is designed to be compatible with

the PyTorch[24] deep learning framework, allowing easy integration into existing neural

network architectures without modification.

Overall, our platform enables cybersecurity researchers and practitioners to better un-

derstand the consequences of malware introduction into neural networks. By providing a

robust and flexible platform, it facilitates the search for effective countermeasures and the

development of more resilient and secure neural network models.

B. Experimental evaluation

To test the fall in accuracy of the models before and after malware injection using our

framework, a series of experiments with different neural network architectures[25] were con-

ducted.

1. Dataset: For testing the model and framework, the ImageNet dataset [26] was uti-

lized. This dataset comprises 1.2 million 3-channel images with dimensions of 224×224

pixels, representing 1000 distinct object categories.

2. Methodology:

• We performed experiments using several pre-trained neural network models.

• For each experiment, different sizes of malware were injected using our framework.

The malware examples were taken from the repositories[17, 27].

• The performance of the modified models was compared with their original models

and the effect of introduced malware on model accuracy was assessed.
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TABLE I: The accuracy of models after malware injection into their weights using the

framework. Cases with a significant drop in model accuracy are highlighted in bold.

Method Model Base
EquationDrug ZeusVM NSIS Mamba WannaCry VikingHorde Artemis

372KB 405KB 1.7MB 2.30MB 3.4MB 7.1MB 12.8MB

LSB Substitution

Alexnet 52.8% 52.8% 52.8% 52.8% 52.8% 52.8% 52.8% 52.8%

Resnet101 76.7% 76.7% 76.7% 76.4% 76.3% 76.2% 75.7% 74.9%

Inception 68.0% 67.9% 68.0% 68.1% 68.0% 67.9% 67.8% 67.1%

Resnet50 76.0% 76.0% 76.1% 76.0% 76.3% 75.9% 76.2% 75.2%

Googlenet 67.1% 66.8% 66.9% 66.7% 65.9% 65.7% - -

Resnet18 67.8% 67.9% 67.8% 67.3% 68.0% 67.5% 58.4% -

Mobilenet 70.9% 0.1% 0.1% 0.1% 0.1% - - -

Squeezenet 54.9% 0.1% 0.1% - - - - -

MSB Reservation

Inception 68.0% 68.0% 68.2% 67.7% 67.0% 68.1% 61.1% 62.7%

Resnet18 67.8% 67.7% 67.4% 67.3% 67.0% 66.3% 66.2% 60.9%

Mobilenet 70.9% 71.1% 69.2% 68.1% 67.0% 63.8% 0.7% -

Fast Substitution

Inception 68.0% 68.0% 67.7% 68.0% 68.1% 67.2% 67.9% 68.0%

Resnet18 67.8% 67.7% 67.3% 67.2% 67.0% 67.6% 66.2% 61.2%

Mobilenet 70.9% 70.8% 70.9% 65.7% 59.8% 40.7% 1.6% -

Half Substitution

Inception 68.0% 68.0% 68.0% 68.0% 68.0% 68.0% 68.0% 68.0%

Resnet18 67.8% 67.8% 67.8% 67.8% 67.8% 67.8% 67.8% 67.8%

Mobilenet 70.9% 70.9% 69.9% 69.3% 66.0% 67.7% 52.0% -

Resilience Training

Inception 68.0% 68.4% 67.6% 67.8% 67.3% 68.3% 67.7% 67.8%

Resnet18 67.8% 67.5% 67.7% 68.0% 67.9% 67.2% 67.3% 68.0%

Mobilenet 70.9% 54.9% 20.4% 0.4% 0.4% 0.7% - -

Value-Mapping

Inception 68.0% 68.0% 68.0% 67.4% 67.7% 67.5% 67.2% 66.2%

Resnet18 67.8% 67.4% 67.4% 67.2% 67.4% 67.9% 67.4% 67.2%

Mobilenet 70.9% 70.1% 70.7% 60.1% 53.1% - - -

Sign-Mapping

Inception 68.0% 68.0% 68.0% 68.0% - - - -

Resnet18 67.8% 67.8% 67.8% 67.8% - - - -

Mobilenet 70.9% - - - - - - -

3. Results and analysis:

Table I shows the accuracy of the models as a result of malware injection using our

framework.

We chose the most frequently used models and malware samples to compare the frame-

work’s capabilities. Since large models have a large capacity, the implementation re-
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sults were shown only for ”LSB substitution” methods, and for the rest of the methods

mostly medium and small models are compared. Note that no model retraining was

used for the ”Resilience Training” method.

• The results of the experiment demonstrated the effectiveness of the framework in

introducing malware into neural networks.

• The modified networks successfully maintained accuracy in most classification

cases on ordinary input data, exhibiting the desired evasive behavior.

• Experimental results revealed a tradeoff between the capacity of the models and

the flow of classification accuracy.

VIII. COUNTERMEASURES

Protecting neural networks from the introduction of malware is critical to ensuring their

integrity and reliability. Several countermeasures can be applied to reduce the risks associ-

ated with this type of attack[28]. The following countermeasures are commonly used:

1. Changing the network architecture: It is possible to change the model structure

or its parameters so that the hash value of the deployed model does not coincide with

the stored one. This can be achieved by changing the network architecture, adding

random layers, or changing the weighting parameters[29].

2. Using reliable model supply channels: By choosing reputable and trustworthy

MLaaS providers, organizations can significantly reduce the likelihood of acquiring

malware-infected models[30].

3. Regular model updates: Keeping neural network models up to date with the latest

security patches and updates is critical to protect against emerging threats. Regular

model updates with improved architecture, robust learning algorithms, and enhanced

security measures can help prevent and detect malware infiltration attempts.

4. Monitoring models: Continuous monitoring of deployed models is necessary to

detect any unusual behavior or deviations from expected patterns. Techniques such

as model self-analysis, anomaly detection, and run-time analysis can help identify

potential malware introductions and initiate appropriate responses[31].
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IX. CONCLUSION

This work introduces a novel framework for embedding malware into neural networks,

leveraging the weight parameters of neurons as carriers of malicious information. By inte-

grating various methods and components, the framework demonstrates the ability to embed

malicious code into neural network models, highlighting the potential security risks associ-

ated with deploying such models.

Experimental evaluation of this framework on various neural network architectures, has

demonstrated its effectiveness in successfully introducing malware while maintaining the

functionality and performance of the model. The findings underscore the need for robust

security measures to address the growing level of threats posed by embedded malware in

machine learning systems.

We discussed the architecture and components of our framework, including the malware

injection methods used, the integration process, and model testing.

In conclusion, our platform proves the vulnerabilities present in machine learning systems

and emphasizes the need for proactive security measures to ensure the integrity, reliability,

and resilience of these systems. By understanding and mitigating the risks associated with

embedded malware, we can improve the security of machine learning applications and help

create a more secure digital landscape.
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X. REVIEWERS REMARKS

The main remark was about the size of article. It was 37 pages, and now it is reduced to

15. All the corrections are listed after reviews and answers.

A. Review 1

2: (accept)

The paper presents a framework to ”manipulate” the behavior of neural networks in order

to deploy malware in the host’s computer system.

strong points of the paper:

1. the introduction that explains different kinds of attacks is very complete. In general

terms, bibliography seems to be complete.

2. the writing is concise and correct.

3. the structure of the paper is good and according to the literature’s standards.

4. the experiments are sound.

In general terms, the paper is very well written, and the material is of interest.

potentially weak points:

1. the explanations (specially in section ”COMPARISON OF EMBEDDING METH-

ODS”) may be a little bit hard to explain. In general, some technical explanations without

examples may be hard for people not used to cybersecurity. Obviously, this is a problem

that has little remedy.

2. Some punctuation marks are not correct. There is a lot of expressions quoted between

¡¡ ¿¿.

3. I do not know if having figures and tables at the end of the paper is a good idea.

Having them next to the text where they appear would probably help the reader.

4. although the subject is connected to AI, it could be argued that it does not fit

completely into the aims of this conference. But my point of view is that this material is of

interest to the community.

These ”weak” points are not as strong as the ”strong” points, therefore, I recommend to

accept this paper.
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1. Answer

Thank you for all the kind words! Regarding to weak points:

1. The ”COMPARISON OF EMBEDDING METHODS” section has been adjusted, but

I’m unable to assess whether it has improved or declined in quality.

2. All the punctuation marks were fixed to this ”quotes”.

3. Figures and tables have become scattered throughout the article.

4. I hope so, thank you!

B. Review 2

2: (accept) The submission is more, than a conference paper. First, its 37 pages is much

over the regular 15p full paper size. Looking at the paper structure one can see that first

14 pages are a kind of a review. Next, we have an almost same size of proposal, followed by

another 10 pages of appendix.

The idea of a paper is good, and it is given in a good manner, but I’m sure the authors

should split this submission in two, or submit it in a full size to a proper journal as an

extended version.

To fit in the conference limits, I would suggest to slash the introdution and appendix.

From a technical point of view, the work is promising.

1. Answer

Thank you very much! The articles size is reduced to 15 pages. All the corrections are

listed in the end.

C. Review 3

-1: (weak reject) In this paper authors present a novel framework for investigating security

leaks in deep neural networks. It allows one to study various methods of malware injection

and triggering, which are described in the paper. Overview of recent results in this area is

provided. Since malware program needs space, it’s injection into neural network weights may

lead to performance degradation of the model. Authors provide data on accuracy decrease
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of several models corresponding to injection of different malware files. Results show that

there is clear dependency between complexity of program to be hidden, size of a network, it’s

compression characteristics and the degradation in performance. Experiments conducted by

authors are methodologically correct, and results obtained seem to be quite meaningful. The

framework presented may prove to be useful for cybersecurity researchers and ML engineers.

Though quite interesting, currently the paper does not meet DAMDID formatting rules,

is 37 pages long and contains appendix. In order to be accepted it should be completely

reformatted in strict conformance with the LNCS Word or Latex format.

1. Answer

Thank you very much! The size of the article was reduced to 15 pages and no longer

contains appendix. As far as I understand, the article meets the conference requirements

now.

XI. ARTICLE CORRECTIONS

A. Abstract

1. The sentences 6, 7 ”The study explores ... initiating malware activation” were rewritten

into one sentence.

2. Added keywords.

B. Introduction

paragraph 2. Last sentence deleted.

paragraph 3. deleted.

paragraph 4. First sentence was left, the rest deleted.

paragraph 4-5. merged.

The last sentence was added.
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C. Problem statement

paragraph 3. deleted.

paragraph 4. deleted.

D. Methodology

Added figure.

paragraph 1. MLaaS full name deleted.

paragraph 1. Last sentence deleted. ”For example ...”

paragraph 3. Enumeration is rewritten into paragraph.

subsection A. deleted.

E. Methods of introducing malware

paragraph 1. Deleted.

subsection A. The reference for deleted figure was deleted.

subsection A. Added figure.

subsection B. Line 1: removed bullets list. Added ”Let’s review them.” instead.

subsection B. paragraph A. paragraph 1. Deleted. Removed last two sentences and

pseudocode 1.

subsection B. paragraph A. paragraph 2. The beginning of the paragraph is deleted till

”However, this solution ...” which is replaced by ”This solution ...”. The next sentence is

deleted ”As shown in table ...”.

subsection B. paragraph B. Enumeration list was deleted.

subsection B. paragraph B. the half of penultimate paragraph and the last paragraph

were deleted.

subsection B. paragraph C. First sentence was deleted.

subsection B. paragraph C. paragraphs 2-3. The last sentences were deleted.

subsection B. paragraph C. paragraph 4. The last two sentences were deleted.

subsection C. Line 1: removed bullets list. Added ”Let’s review them.” instead.

subsection C. paragraph A. the last several sentences were deleted starting from ”For

example ...”
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subsection C. paragraph B. The first several sentences were deleted till ”Therefore, ...”.

The word was deleted and new sentence started by ”If we replace ...”. And the last sentence

was deleted.

subsection C. paragraph C. paragraph 1. Last sentence was deleted. ”For example ...”.

subsection C. paragraph C. The last sentence was deleted.

F. Comparison of embedding methods

paragraph 2. Deleted. All the references to deleted tables were deleted. Instead there is

a reference to corresponding articles.

G. Methods of malware activation

subsection Triggers. First two paragraphs were deleted.

subsection Triggers. Itemize list was deleted.

subsection Triggers. paragraph 6. Deleted.

subsection Triggers. paragraph 7. The last sentence was deleted ”For example, ...”

subsection Activation. Reference for CVE table was deleted.

subsection Activation. CVE explanations were deleted. Instead their numbers are just

given.

H. Framework

subsection Review. In enumeration points 2 and 5 are deleted.

subsection Architecture and components. Deleted.

subsection Experimental evaluation. paragraph 1. The last sentence is deleted.

subsection Experimental evaluation. Table was moved from appendix.

subsection Experimental evaluation. Enumeration list. Point Methodology. The sen-

tences containing references for deleted tables were deleted.

subsection Experimental evaluation. Enumeration list. Point Results and analysis. The

explanation for the table ”The dash mark ...” was deleted.
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subsection Experimental evaluation. Enumeration list. Point Discussion and Implica-

tions. Deleted.

subsection Limitations and future work. Deleted.

I. Countermeasures

Enumeration list. Point 1. Last several sentences were deleted.

Enumeration list. Point 2. The first sentence was left, the rest - deleted.

Enumeration list. Point 3. Deleted.

Enumeration list. Point 6. Deleted.

The last two paragraphs were deleted.

J. Conclusion

Paragraph 2. ”including AlexNet, ResNet, and MobileNet, among others” was deleted.

Paragraph 4. Deleted.

K. Bibliography

The bibliography size was reduced to 30 entries.

L. Appendix

FIG 1. Size reduced to 90%.

FIG 2. Deleted.

FIG 3. Deleted.

TABLE 1. Deleted.

Algorithm 1. Deleted.

TABLE VI. Deleted.

TABLE VII. Deleted.

TABLE VIII. Deleted.

TABLE IX. Deleted.

TABLE X. Deleted.
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TABLE XI. Deleted.

TABLE XII. Moved to section ”Framework”.

Appendix. Deleted.


