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Abstract. This paper provides an overview of tool for computational
experiments, which are utilized in the realm of compound property anal-
ysis. Moreover, it outlines the initial outcomes of developing a novel re-
search toolbox system that concentrates on exploring the interpretability
and explainability of machine learning outcomes. The proposed solution
is based on open-source tools and offers a convenient approach to address
specific material science issues. The efficacy of this solution is currently
being tested on problems related to compound synthesis optimization,
antibacterial activity analysis, and other related areas.
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1 Introduction

The development of artificial intelligence methods has facilitated the exploration
of diverse machine learning techniques to analyze material properties and synthe-
size materials with predetermined characteristics. Notably, the AlphaFold[7][8]
project, which automates protein folding, and the M3GNet[4][9] project, which
automates compound property prediction, have gained widespread recognition.

This paper aims to review the preliminary stages and research directions for
the development of well interpreted machine learning (ML) methods and their
implementation in the form of research toolbox software (RTS) for solving spe-
cific problems of compound property analysis. For the test case the study exam-
ines the biocidal properties of reagents, as there is currently a lack of confirmed
correlations between these properties and the characteristics of the reagents.
Besides, there is no established relationship between the characteristics of the
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reagents and the composition and structure of microorganisms, particularly bac-
teria and viruses. This multifactorial problem can only be addressed through the
formulation of optimal reagent parameters for specific microorganisms or groups
of bacteria, fungi, and viruses, which can be achieved through the use of RTSs.

The rapid advancement of ML has prompted the authors to revise the require-
ments for the RTS. This is necessary to comprehend the emergence of promising
implementations and to cater to the needs of conducting specific ML experi-
ments conveniently, including the interpretation and design of their outcomes.
The primary requirements for an RTS include: 1) support for computational
experiment methodology; 2) user-friendliness; 3) extensibility; 4) utilization of
open-source tools only; 5) ability to import/export data seamlessly at any stage
of an experiment.

Furthermore, collaborative work based on modern cloud platforms is essen-
tial, while also supporting local experiments. This can be achieved through an
appropriate RTS database and a knowledge base scheme. It may come as a sur-
prise that there is still no reference implementation of RTS that fully meets
the set of requirements, which were briefly outlined before. This, however, could
be easily explained by the persistent technological advancements and that such
a project needs a transdisciplinary team as one of the resources. Thus, one of
the authors participated in the development of the RTS for Structural Analysis
”Graph Model Workshop”, which adheres to the stated methodology and em-
phasizes transdisciplinarity. However, the technology used in the previous work
requires updating.

Simultaneously, the methodology of computational experiments is undergo-
ing active updates, as highlighted in the article ”Computational Experiments:
Past, Present and Future”[15], which focuses on simulation. Additionally, the
development of open platform projects has reached a threshold where knowl-
edge of the methodology and integration features enables the implementation of
powerful scenarios in a relatively short time while considering the fundamental
needs of both analysts and subject matter experts.

As a reference system for particular cases, we consider the NOMAD[14]
project, which open database has already accumulated more than 10 million
compounds and 100 million results of computational experiments. To understand
the vastness of the technological stack, one can explore the logical architecture
of the NOMAND, where the main technologies are indicated (Fig. 1).

2 Interpretability

As the area of material properties research advances, researchers are increas-
ingly interested in the appropriate application of artificial intelligence meth-
ods. With the development of more diverse and sophisticated mathematical
methods[12][16], questions of interpretability and explainability have become
more pressing. Moreover, it is important to note that the regulatory burden is
expected to increase dramatically[10]. This trend has already been observed in
medical informatics, where the accumulated experience with randomized clini-
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Fig. 1. Architectural composition of the NOMAD system

cal trials has led to greater regulatory oversight[5]. Let us emphases that trans-
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Fig. 2. Basic Concepts of Interpretability

parency has been considered a crucial addition to reproducibility for a long time.
So far, a successful explanation of the meaning of the terminology remains the
work ”A Survey of Explainable AI Terminology”[11], where Figure 2 is given.
Moreover, the terminological system has shifted away from the original concept of
”interpretability,” which remains central. The serious research on interpretability
of ML methods in its modern form began in 2015, after the full implementation
of deep ML and the first generative models had appeared. The papers, which not
only consider ML, but take into account the needs of experts as well, appeared
in 2018 (g.e. the open work ”The Building Blocks of Interpretability” with inter-
active illustrations[6]). For a comprehensive collection of recipes for ”standard”
ML methods, Molnar’s constantly updated work[3] is the best resource.

3 Solution architecture

The proposed RTS architecture largely resembles many of today’s collaborative
RTS, but with a simplified business logic layer (backend), a more specific user
interface (frontend), and a focus on the work as ML experts as subject matter
experts. The system places a conscious emphasis on ease of use and integration
with other researcher tools, including Microsoft Excel.

From a user’s perspective, the system presents two main workplaces:

1. Material Scientist (Domain Expert) can access a web application that utilizes
Apache Foundation community components;
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2. Data Analyst can access additional workplaces based on the JupyterLab.

The primary RTS data repository is a relational database (PostgreSQL) that
was extended with ML capabilities integrated into tables (project MindsDB) and
feature engineering (project Featuretools). The database was extended with a
(the Apache AGE that provides graph database functionality for PostgreSQL).

The RTS data model can be divided into four parts:

1. General ontologies, property (feature) descriptions, and standard data sets
(units, physical constants, etc.).

2. Data on the studied entities of a particular subject area (e.g., bacteria in the
study of antibacterial effects).

3. Data on investigated chemical compounds.
4. Data from experiments and the data sets used in them (runs of computa-

tional experiments, results obtained, training, test, and validation samples).
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Fig. 3. Part of the RTS data model in terms of predicting antibacterial properties

The last two parts of the RTS data model are unified by storing data as
triples 〈object, property, value〉. In such triple, an object represents an instance
of an entity, a property – a semantic relation, and a value – any structured data
element. For the convenience of use basic ML methods, it is recommended to
work with numeric values. The part of the conceptual data model is shown in
Fig. 3 (the entity occurrences in common ontologies are indicated). In the current
development stage we have chosen to use ”ChemFont”[1] ontology for chemical
compounds, ”NCBITaxon”[2] ontology for bacteria and ”Ontology of units of
Measure”[13] for units interpretation and conversion. The ”affects” ternary re-
lationships link the agent, object of influence, object properties, an experiment,

https://www.postgresql.org/
https://mindsdb.com
https://featuretools.alteryx.com/
https://age.apache.org
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and have several properties, such as the characteristics of influence (e.g., ”6% in-
crease”). To predict the effect, a similar ”affects by prediction” relationship has
been introduced, replacing a real experiment with a computational experiment.
This allows the ontology-based cross-cutting comparison of results in subgroups,
which serves as a basis for prediction-guided chemical experimentation.

4 Visualization

Classical visualizers of ML experiments are now being complemented by specific
visualizers of spectrograms, diffractograms, and other variants of both input
data and results. One of the directions for further research is the development,
comparison, and integration of specific interpretation and visualization meth-
ods. Solutions from well-known companies such as OriginLab and WaveMetrics
serve as a reference for this purpose. It is important for us to understand ”first
principals” (physics, chemistry, and mathematics) behind a particular solution
to ensure adequate comparison and selection of methods. To interactively inves-
tigate preliminary results we use Perspective, while Apache Superset is utilized
to build final interactive reports. Figure 4 illustrates one of the 15 visualization
options available for all user’s roles.

Fig. 4. Example of an interactive study of a sample of lanthanides

5 Antibacterial activity analysis

In our paper, we provide an illustrative example of the analysis of antibacte-
rial activity of Rare-earth elements (REE). This task holds immense value due
to its potential application in the pharmaceutical industry. The study primar-
ily employs rule-based models due to their interpretability and ability to pro-
vide insights into feature importance and relationships. The dataset used in the

http://www.originlab.com
http://www.wavemetrics.com
http://perspective.finos.org
http://superset.apache.org
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study comprises information on chemical compounds being tested and bacteria
affected by REE. The target variable is diameter of the bacterial growth retar-
dation. Chemical compounds data contains: ionic radii according to Shannon
system; electronegativity of REE; structural type or crystal structure; coordina-
tion number of REE in the salt; coordination number of REE in solution; pH of
solution; etc.

The inclusion of data on bacterial properties that confer resistance to ac-
tive compounds is expected to enhance the understanding of the mechanisms
underlying antibacterial activity. Bacteria data contain:

1. gram-test [gram-positive / gram-negative];
2. wall thickness;
3. wall structure [homogeneous / layered];
4. wall composition 1 [teixoic, lipoic and teixoic acids - up to 50% of the dry

weight / absent];
5. wall composition 2 [high peptidoglycan (murein) content - 90% dry weight

/ small murein content - 5-10% dry weight];
6. outer membrane [no lipopolysaccharides, some strains have toxic glycolipids

/ lipopolysaccharides, phospholipids, lipoproteins];
7. membrane pore diameter;
8. proteins [antigen specificity determining proteins / porins];
9. penicillin sensitivity [high / low];
10. rigid and plastic cell wall layers [bound covalently / bound labilely].

Due to the nature of the domain and a limited number of experiments, the
dataset currently has a large number of features as it contains both bacteria pa-
rameters and parameters of compounds. At the same time we due with a small
sample with only 99 objects. This leads to the fact that traditional supervised
learning approaches are not particularly appealing to domain experts. Rather
than focusing on the accuracy of model predictions, they are more interested in
obtaining evidences, hypotheses, and directions for further experiments. There-
fore, rule-based models were selected as the initial models for computational
experiments, as they are quite interpretable and enable to generate a range of
hypotheses for future work.

Note that REE is used in the experiments in two forms: salt and solution. It
has been observed that the choice of form significantly impacts on the obtained
results (fig. 5). To support this, the training sample was employed in its entirety,
as well as separately for salts and solutions. The training process involved the
use of three models, namely RandomForest, GradientBoosting, and XGBoost.
The performance of these models was evaluated using mean absolute error, and
the results are presented in Table 1.

Parameter importance charts were generated (figures 5, 6, 7) based on the
analysis of the best models. The results indicate that for the mixed dataset, the
feature with the highest importance is ”Is salt”. Additionally among others, the
model takes into account such features as crystal structure type, wall thickness,
electronegativity, etc. However, these features are assigned relatively low weights,
less than 0.03. This means that a state of active compound strongly affects results
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Fig. 5. Features importance for XGBoost model on mixed dataset

Model Mixed dataset Salts dataset Solutions dataset

Measures MAE R2 MAE R2 MAE R2

RandomForest 4.44 0.38 4.80 0.079 3.89 -0.98

GradientBoosting 4.52 0.49 4.97 0.007 3.41 -0.49

XGBoost 4.42 0.51 4.90 0.046 3.40 -0.52
Table 1. Model training results measured in MAE and R2
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Fig. 6. Features importance for RandomForest model on salts dataset

and we should analyse them separately. After splitting the dataset, the results
for solutions shew a significant improvement and results for salts become poorer,
which, however, can be explained by the small size of dataset. After splitting the
models begin to assign higher importance to other features, with coordination
number being the most important feature for solutions, while electronegativity is
the most important feature for salts. It is worth noting that the model trained on



8 A.A. Glushko et al.

the solutions dataset does not account for bacterial properties. In contrast, the
model trained on the salts dataset takes into account bacterial properties such
as Gram-stain and wall structure, as well as other properties with less weight.
The obtained results were used to confirm the hypothesis of a significant effect of
electronegativity on antibacterial activity and facilitated the development of an
additional set of experiments. Model hyper parameters we have used are listed
in the table 2.

Parameter XGBoost mixed XGBoost solutions RandomForest salts

colsample bytree 0.8 0.8 -

gamma 1 0.5 -

max depth 3 3 4

min child weight 17 15 -

subsample 1.0 0.6 -

learning rate 0.02 0.02 -

n estimator 600 600 900
Table 2. Hyper parameters of different models
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Fig. 7. Features importance for XGBoost model on solutions dataset

6 Results and prospects

The paper presented an environment for computational experiments in material
science and related fields. It is designed to create and compare well-interpretable
ML artifacts with ontology-based explanation. As a result, we applied our system
to analyze antimicrobial activity. We identified the parameters that have the
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greatest impact on the final result of the substance’s antimicrobial activity by
using rule-based model. This information seems to be valuable in guiding future
experiments and selecting the most promising parameters for testing. In addition
to analyzing antibacterial activity, we are also testing the system’s efficacy in
optimizing the synthesis of materials, specifically titanium sols.

Currently, our team is engaged in the active enhancement of the user interface
and data model of our research toolbox. A crucial aspect of this development
is the incorporation of additional ontologies (chemical, biological, etc.), that are
expected to substantially augment the system’s capabilities. We are optimistic
that the system for simultaneous conducting/analyzing ”virtual” experiments
and interpreting/directing ”real” experiments will prove to be a valuable asset
to domain researchers in material science.

References

1. ChemFOnt. https://www.chemfont.ca/ontology brows
2. NCI Term Browser. https://nciterms.nci.nih.gov/ncitbrowser
3. C. Molnar: Interpretable machine learning (2022)
4. Chen C., Ong S.P: A universal graph deep learning interatomic potential for the

periodic table. Nature Computational Science 2, 718–728 (2022)
5. Chen H., Gomez C., Huang C.M., Unberath M: Explainable medical imaging AI

needs human-centered design: Guidelines and evidence from a systematic review.
NPJ Digital Medicine 5(156) (2022)

6. Chris Olah, Arvind Satyanarayan, Ian Johnson, Shan Carter, Ludwig Schubert,
Katherine Ye, Alexander Mordvintsev: The building blocks of interpretability. Dis-
till Journal (2018)

7. DeepMind EMBL-EBI: AlphaFold protein structure database.
http://alphafold.ebi.ac.uk

8. Jumper J., Evans R., Pritzel A.: Highly accurate protein structure prediction with
AlphaFold. Nature 596, 583–589 (2021)

9. Lab, M.V.: Matterverse.ai. http://matterverse.ai
10. Matus K.J.M., Veale M: Certification systems for machine learning: Lessons from

sustainability. Regulation & Governance 16(1), 177–196 (2022)
11. Miruna-Adriana Clinciu, Helen Hastie: A survey of explainable AI terminology.

In: Proceedings of the 1st Workshop on Interactive Natural Language Technology
for Explainable Artificial Intelligence (NL4XAI 2019). pp. 8–13. Association for
Computational Linguistics (2019). https://doi.org/10.18653/v1/W19-8403

12. Oviedo F., Ferres J.L., Buonassisi T., Butler K.T: Interpretable and explainable
machine learning for materials science and chemistry. Accounts of Materials Re-
search 3(6), 597–607 (2022)

13. Rijgersberg, H.: OM - Ontology of Units of Measure.
https://github.com/HajoRijgersberg/OM (May 2023)

14. Sbailò L., Fekete Á., Ghiringhelli L.M., E: The NOMAD Artificial-Intelligence
Toolkit: Turning materials-science data into knowledge and understanding. NPJ
Computational Materials 8 (2022)

15. Xue X., Yu X.N., Zhou D.Y., Wang X., Zhou Z.B., Wang F.Y: Computational
experiments: Past. Present and Future 2202(13690) (2022)

16. Zhong X., Gallagher B., Liu S., Kailkhura B..H.A.H.T.Y: Explainable machine
learning in materials science. NPJ Computational Materials 8 (2022)

https://doi.org/10.18653/v1/W19-8403

	Interactive Research Toolbox for Chemical Compounds Analysis Based on Well-interpretable ML Methods 

