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Abstract. In this paper we use 19 years of data from INTEGRAL detec-
tors to train classification model for gamma-ray bursts. We present algo-
rithms for automated processing of the light curve of gamma-ray bursts,
consisting of a background approximation, distinguishing an event from
background, and duration calculation. Candidates are crossmatched with
several catalogues of transient events. This provided us labels for su-
pervised machine learning. Gradient boosting classifier is employed for
training to find Solar flares and gamma-ray bursts. Estimated accuracy
is ∼ 91% for latter events. Similar machine learning approach can be
applied to other types of transients.

Keywords: Machine learning · Crossmatching · Gamma-ray bursts ·
INTEGRAL.

1 Introduction

Gamma-ray bursts (GRB) where discovered in 1973 as a sudden and rapid in-
crease in gamma-ray flux[21]. Since then GRB trigger algorithms rely on search
for excess of signal above background on short timescale; for example, the trig-
ger scale in IBAS varies from 0.05 to 5 seconds[30]. This works well for usual
short (duration less than 2 seconds) and long (greater that 2 seconds) gamma-
ray bursts, but can be problematic in case of events with large signal rise time
and/or duration. An example of such an event is ultralong gamma-ray bursts[15]:
their duration varies from hundreds up to tens thousands of seconds[5] and may
consist of several episodes. Also, it was reported[37] that duration distribution of
long bursts is skewed, possibly, because of not found long events with duration
≳ 100 seconds.
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There is a way to fill this gap in long events - ”offline” blind search, car-
ried out on archival data. It is named blind, because search procedure does not
have information about presence of known transient at any given time. One of
them is Bayesian blocks[35], it is well suited for observatories with stable back-
ground, such as Konus-WIND (KW)[7]. A more conventional approach when
working with more variable background is using running averages and search
for excesses on different timescales[34]. More precise background approximation
can be achieved by modeling based on physical properties of observatory and
environment. It can be conducted by either physical approach[9] or by training
a Neural Network[13]. After that search algorithm can be applied: simple signif-
icance threshold or, for example, FOCuS-Poisson[40]. A step further would be
using Recurrent Neural Networks, perfectly suited for sequential data, for both
background approximation and anomaly detection[33,28].

Determining origin of detected transients is the main problem, especially
for detectors without imaging and spectral capabilities. Often, transients are
distinguished by a set of different parameters in several dimensions, such as
comparison of flux in different detectors or shape of the light curve. It can be
carried out by traditional machine learning approaches (for example, random
forest [25,14,41]) or by deep learning[33]. Classification requires labels, which
are usually derived from catalogues of transients via crossmatching procedure.

In this paper we present our approach to problem of classification long tran-
sients using INTEGRAL data. We employ new method, that combines statistical
approach to background modeling and data processing with Gradient Boosting
classifier.

2 Instruments and data processing

2.1 INTEGRAL

INTEGRAL was launched in 2002 on highly elliptical orbit, with apogee about
150000 km[18]. We use data from almost every detector onboard observatory,
namely SPectrometer of INTEGRAL (SPI), SPI AntiCoincidence Shield (SPI-
ACS), INTEGRAL Radiation Environment Monitor (IREM), JEM-X, Imager
on-Board the INTEGRAL Satellite (IBIS) consisting of Integral Soft Gamma-
Ray Imager (ISGRI) and Pixellated Caesium-Iodide Telescope (PICsIT). SPI-
ACS is a scintilator, which main purpose is to protect SPI from background
photons outside its field of view (FOV), but it has been proven as an effective
separate gamma-ray detector[32,39]. Its main disadvantage is lack of imaging and
spectral capabilities. IREM is a semiconductor detector, aimed at monitoring
radiation environment and prevent damage to other instruments[17]. It can also
be used as a full-fledged detector of charged particles. Among 15 channels we
use only TC3. It is sensitive to electrons from 0.8 MeV and protons from 12
MeV and has the widest energy range and sensitivity. JEM-X[26], SPI[38] and
IBIS[24,23,29] are imaging detectors, that differ in operating energy range: from
low energy X-ray in JEM-X to gamma-ray in SPI. Information from all these
detectors can give a broad insight about transients spectra, temporal structure
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in high energy range (from 3 keV and above), and its origin (either radiation or
particles).

2.2 Dataset

As a dataset we use sample of 4364 transient events found in SPI-ACS data with
more than 3σ significance between 2003 and 2021. One fraction of these events
are random fluctuations, while another are real Solar and astrophysical events.
Distribution by detection year is presented in Fig. 1. The number of detections
is correlated with the Solar activity cycle. This is expected due to increasing
instability of particle environment and number of flares in this period.
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Fig. 1. Distribution of triggered events by year.

2.3 Data processing

Preprocessing procedure is needed to determine duration and flux for each de-
tector, which will be the main features of the model. These parameters can be
found in almost every existing catalog of gamma-ray transients, which allows
the model to be applied to them without additional processing.

The duration is calculated using the SPI-ACS light curve according to the
procedure whose block schema is presented in Fig. 2.

Algorithm requires initial timescale, that varies from 20 to 200 seconds and is
selected individually for each event. Firstly, the light curve is binned into current
(initial) timescale tcurr. Then follows the main part, background subtraction and
event extraction. In this section an array of {(ti, ci)} is referred to as event. On
the first iteration this array is empty. Algorithm consists of 3 steps:
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Fig. 2. Procedure of processing SPI-ACS light curve.

1. Approximate background with 3rd degree polynomial using all bins in light
curve, except event. Resulting model is subtracted from original data.

2. Determine point (tmax, cmax) with maximum statistical significance. Statis-
tical significance above background is determined as F√

D
, where F is number

of counts in a bin after background subtraction and D is the dispersion, cal-
culated on the background intervals from previous stage (1).

3. Calculate T1σ. In this paper T1σ is number of seconds between first and
second bin with significance more than 1σ without gaps. We compared 1σ
values to manually calculated duration parameters T50, T90, T100 of sample
of bursts with extended emission[27]. In majority of cases (∼ 65%) value of
T1σ is between T50 and T100. The remaining events belong to the case when
the burst consists of several episodes.

Steps (1) - (3) are repeated 3 times. On second and third step bins corre-
sponding to event (calculated from previous steps) are taken into account (ex-
cluded) in the process of background modeling (1), which increases quality if
approximation.

After that, event is checked on two stopping conditions: limit value of tcurr
is reached or event has 10 or more bins. Latter condition is introduced to save
computation time in case of long transients. If neither of this conditions are met,
then algorithm is repeated from the beginning with tcurr = tcurr

2 . Also on the
first step T1σ interval is excluded from background approximation.

Finally, background subtracted integral flux over T1σ interval is calculated.
We also want to add light curve shape to feature space. Therefore we bin light
curve into 10 bins. Their duration varies for different events, because it depends
on T1σ. After binning counts are normalized to be in range [0,1] and added as
separate features.

For other detectors procedure is much simpler. Background model is a 1st
degree polynomial, calculated on light curve except for the T1σ interval. Then, we
calculate background subtracted integral flux in this interval. All code is written
in Python and can be found at Github. Final dataset is composed of 21 feature:
duration T1σ, mean distance to Earth in T1σ interval, 10 bins for light curve
shape and 9 integral fluxes of INTEGRAL detectors: SPI-ACS, IBIS veto[29],
IREM TC3, ISGRI (20-100 keV), JMX 1 and 2 (3-20 keV), PICsIT (event mode
and spectrum mode, 175-500 keV) and SPI (20-500 keV).

https://github.com/Jorezzz/GRB_blind_search
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3 Crossmatching and labeling

To train a classifier our dataset must be labeled. This is done by crossmatching
our events with events from different catalogues of confirmed events. In this
paper we consider 3 classes of transients: gamma-ray bursts, Solar flares and
background fluctuation, is the class which represents either absence of an event
or presence of an unknown background activity. For gamma-ray bursts we use K.
Hurleys ”masterlist”[3], compilation of confirmed GRB from different catalogues
up to 2021. The reason we chose Konus-WIND lies in its position. Location in
L2 point guarantees stable background, which is important for detecting long
events with duration ≳ 100 seconds. Difficulties in detecting long and ultra-
long events with near-Earth observatories are described for example in [9,13].
For Solar flares we use GOES[1] and RHESSI[4] catalogues as well as Konus-
WIND SF catalog[2]. It has close to SPI-ACS energy range (unlike former ones
working in X-ray) so we eliminate coincide triggers. Events crossmatched only
with GOES and RHESSI catalogues are marked as potential Solar flares and
are not used in training process. There are several types of events, that has non-
radiative nature: SEPEs[31], electron clusters in magnetosphere tail[22], crossing
of van Allens belts[17] etc.. These events has unstable radiation environment and
background model could not describe it well. Therefore we classify all events with
background χ2/d.o.f. > 3 as background events.

For crossmatching we use trigger times and duration T1σ of the event. An
event is crossmatched with catalog if time interval of candidate intersects with
time interval of catalog event. If duration or time interval is not provided, we
check if catalog time belongs to T1σ interval. One event can belong to multiple
classes: this may happen by accident, when gamma-ray burst coincide with Solar
flare, or confirmed event may be surrounded by an unstable background. This
is physically impossible and show imperfection of our crossmatching algorithm.
In this case we consider one event belonging to several classes, which can be
represented as duplicates in a dataset with different labels.

After the crossmatching step, 2420 events are labeled, remaining 1944 events
are not found in the used catalogues and have stable background. The duration
distribution is shown in Fig. 3. As expected the Solar flares generally longer
than the gamma-ray bursts[16,36]. Also, number of background (1909) events is
bigger then GRB and, especially, Solar events. Such imbalance needs to be taken
into account during training.

4 Model

In this paper we use gradient boosting as classifier. It is one of universal algo-
rithms which has proven to be one of the best for tabular data [20]. It requires
less data than NN, which is important due to our relatively small dataset (only
3198 events). Hyperparameter optimization is fulfilled via optuna[6] package
with objective to maximize precision of predicting gamma-ray bursts. Therefore
we use Fβ = (1+ β2) · precision·recall

(β2·precision)+recall score [8] with β = 0.5. Two commonly
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Fig. 3. Duration distribution of labeled events.

used values for β are 2, which weighs recall higher than precision, and 0.5, which
weighs recall lower than precision. We perform 500 iteration, each time generat-
ing new train and test splits in ratio of 80 to 20. Optimal parameters are then
used during training. Training is executed on 80% of data, the rest is used to
control accuracy metrics. In Fig.4 we present a ROC (Receiver Operating Char-
acteristic), which binds the True positive rate to the False positive rate and can
be used to evaluate the quality of prediction as follows: the closer the area under
ROC curve (ROC AUC) to 1 the better. ROC AUC for gamma-ray bursts is
0.97.
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We calculate custom probability thresholds for GRB and Solar flares maxi-
mizing Fβ score. The optimal probability thresholds are 0.828 for GRB and 0.5
for Solar flares.

We applied similar training and evaluation procedures for other models: Lo-
gistic Regression [10] and Random Forest [12]. The results are presented in the
Table 1. Gradient boosting outperforms both of the models and is much faster
than Random Forest classifier (possibly due to different implementations).

Table 1. Comparison of different ML models. sklearn implementation of Logistic Re-
gression and Random Forest is used.

Model fβ Balanced Accuracy

Logistic Regression 0.51 0.38
Random Forest 0.87 0.60
Gradient Boosting 0.90 0.67

We also checked whether the model is overfitting. One model is trained as
described above and another one with early stopping: 10% of training data is
allocated for validation set, which is used to stop training when metrics stop im-
proving for 100 rounds. Then the results are compared. No significant difference
is found between this models, all metrcis are withing margin of errors.

5 Results

We analyzed feature importances of our model, i.e., the relative values, describ-
ing impact of each feature on the final prediction. It is calculated via LightGBM
[20] embedded functions based on Gini impurity[11]. Top 4 important features
are total fluence in SPI-ACS, duration, ISGRI and IREM fluence. It is explained
by strong distinction of events by duration and the fact, that background fluctu-
ations tend to be more faint than real GRB (for the same duration). Moreover,
importance of IREM fluence indicate that background events, unlike GRB, may
consist of charged particles.

Confusion matrix for test set is presented in Fig. 5. The number in each
square in the confusion matrices represents the overall classification for each
event type compared to the actual classification obtained through crossmatching
procedure. To evaluate the accuracy of our classifier, we use the method of
cross-fold validation on 10 folds. One fold consist of 10 sets, nine are used for
training, last one uses the created model to classify the remaining sample set.
This procedure is repeated for each fold and metrics are averaged. Total accuracy
is 91± 4% for gamma-ray bursts. Such high accuracy is achieved at the cost of
recall, its value is ∼ 73%. This fact does not contradict the goals of our work,
to make reliable classification model. For Solar flares accuracy is 35±32%. Such
low value can be a result of low amount of samples, only 61 event for both
training and test samples. Also, it can be low due to high similarity between
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GRB and Solar flares with gamma-ray emission. INTEGRAL detectors could
lack sensitivity to pick out differences in the spectrum. The last reason might be
the crossmatching procedure. We compare events based only on time intervals,
which does not negate possible coincidences.

We checked the hypothesis that hyperparameter selection created a bias to-
wards GRB and lowered precision for Solar flares. We repeated hyperparameter
optimization for 2 more cases with objectives of maximizing Fβ for Solar flares
and maximizing sum of Fβ scores for SF and GRB. Neither of this approaches
show significantly better results, all metrics were within margin of error.

6 Conclusion

Our model shows consistent result in classification of gamma-ray bursts with
accuracy ∼ 91% on test set. This makes it possible to classify events in the
absence of data from other observatories. Accuracy can be improved by several
ways. Firstly, we can expand our training dataset; it can include more known
confirmed gamma-ray bursts and Solar flares. Secondly, we can enrich feature
space with new parameters. We can expand usage of the shape of transient on
all events and apply Furie Transform with dimensionality reduction to use them
as features[19]. Thirdly, use more complex algorithm, for example ensemble of
multiple machine learning models or Neural Network. Also we can make use
of imaging detectors: if transient is seen inside FOV we can use Convolutional
Neural Network to help with classification.

The method, proposed in this work can be extended to any observatory,
having a sufficient set of detectors. The more detectors with non-overlapping
energy ranges it has, the better should be the accuracy for different classes of
events.

References

1. GOES flare list. ftp://ftp.swpc.noaa.gov/pub/warehouse/, last accessed 07 May
2023

2. Konus-WIND Solar Flares. http://www.ioffe.ru/LEA/Solar/index.html, last ac-
cessed 07 May 2023

3. ”Masterlist”, compilation of confirmed gamma-ray bursts. www.ssl.berkeley.edu/
ipn3/masterli.txt, last accessed 07 August 2022

4. RHESSI flare list. https://hesperia.gsfc.nasa.gov/hessidata/dbase/, last accessed
07 May 2023

5. Ultra-long gamma-ray burst candidates. http://www.ioffe.ru/LEA/kw/wm/
ulong/index.html, last accessed 07 May 2023

6. Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation
hyperparameter optimization framework (2019)

7. Aptekar, R.L., Frederiks, D.D., Golenetskii, S.V., Ilynskii, V.N., Mazets, E.P.,
Panov, V.N., Sokolova, Z.J., Terekhov, M.M., Butterworth, P.S., Cline, T.L., Stil-
well, D.E.: Konus-WIND experiment for cosmic gamma-ray bursts: Observational
capabilities. In: Rothschild, R.E., Lingenfelter, R.E. (eds.) High Velocity Neutron

ftp://ftp.swpc.noaa.gov/pub/warehouse/
http://www.ioffe.ru/LEA/Solar/index.html
www.ssl.berkeley.edu/ipn3/masterli.txt
www.ssl.berkeley.edu/ipn3/masterli.txt
https://hesperia.gsfc.nasa.gov/hessidata/dbase/
http://www.ioffe.ru/LEA/kw/wm/ulong/index.html
http://www.ioffe.ru/LEA/kw/wm/ulong/index.html


Classification of long gamma-ray transients using machine learning 9

Stars. American Institute of Physics Conference Series, vol. 366, pp. 158–163 (Apr
1996). https://doi.org/10.1063/1.50233

8. Baeza-Yates, R., Ribeiro-neto, B., Mills, D., Bonn, O., Juan, S., Mexico, M., Taipei,
C., Wesley, A., Limited, L.: Modern information retrieval (07 1999)

9. Biltzinger, B., Kunzweiler, F., Greiner, J., Toelge, K., Burgess, J.M.: A physical
background model for the ifermi/i gamma-ray burst monitor. Astronomy &amp
Astrophysics 640, A8 (jul 2020). https://doi.org/10.1051/0004-6361/201937347,
https://doi.org/10.1051%2F0004-6361%2F201937347

10. Bishop, C.M.: Pattern Recognition and Machine Learning (Information Science
and Statistics). Springer-Verlag, Berlin, Heidelberg (2006)

11. Breiman, L., Friedman, J., Stone, C., Olshen, R.: Classification and Regres-
sion Trees. Taylor & Francis (1984), https://books.google.com.ua/books?id=
JwQx-WOmSyQC

12. Breiman, L.: Random Forests. Machine Learning 45, 5–32 (Jan 2001).
https://doi.org/10.1023/A:1010933404324

13. Crupi, R., Dilillo, G., Bissaldi, E., Fiore, F., Vacchi, A.: Searching for long faint
astronomical high energy transients: a data driven approach (2023)

14. Farrell, S.A., Murphy, T., Lo, K.K.: Autoclassification of the Variable 3XMM
Sources Using the Random Forest Machine Learning Algorithm. 813(1), 28 (Nov
2015). https://doi.org/10.1088/0004-637X/813/1/28

15. Gendre, B.: Ultralong GRBs as proxy of Population III stars. In: 40th COSPAR
Scientific Assembly. vol. 40, pp. E1.17–10–14 (Jan 2014)

16. Grieder, P.K.: Chapter 6 - heliospheric phenomena. In: Grieder, P.K.
(ed.) Cosmic Rays at Earth, pp. 893–974. Elsevier, Amsterdam (2001).
https://doi.org/https://doi.org/10.1016/B978-044450710-5/50008-7, https:
//www.sciencedirect.com/science/article/pii/B9780444507105500087

17. Hajdas, W., Bühler, P., Eggel, C., Favre, P., Mchedlishvili, A., Zehn-
der, A.: Radiation environment along the iINTEGRAL/i orbit measured
with the IREM monitor. Astronomy &amp Astrophysics 411(1), L43–
L47 (nov 2003). https://doi.org/10.1051/0004-6361:20031251, https://doi.org/10.
1051%2F0004-6361%3A20031251

18. Jensen, P.L., Clausen, K., Cassi, C., Ravera, F., Janin, G., Winkler, C., Much,
R.: The INTEGRAL spacecraft - in-orbit performance. 411, L7–L17 (Nov 2003).
https://doi.org/10.1051/0004-6361:20031173

19. Jespersen, C.K., Severin, J.B., Steinhardt, C.L., Vinther, J., Fynbo, J.P.U.,
Selsing, J., Watson, D.: An Unambiguous Separation of Gamma-Ray Bursts
into Two Classes from Prompt Emission Alone. 896(2), L20 (Jun 2020).
https://doi.org/10.3847/2041-8213/ab964d

20. Ke, G., Meng, Q., Finley, T., Wang, T., Chen, W., Ma, W., Ye, Q., Liu,
T.Y.: Lightgbm: A highly efficient gradient boosting decision tree. In: Guyon, I.,
Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett,
R. (eds.) Advances in Neural Information Processing Systems. vol. 30. Curran As-
sociates, Inc. (2017), https://proceedings.neurips.cc/paper files/paper/2017/file/
6449f44a102fde848669bdd9eb6b76fa-Paper.pdf

21. Klebesadel, R.W., Strong, I.B., Olson, R.A.: Observations of Gamma-Ray Bursts
of Cosmic Origin. In: Bulletin of the American Astronomical Society. vol. 5, p. 322
(Jun 1973)

22. Konradi, A.: Electron and proton fluxes in the tail of the magnetosphere. 71(9),
2317–2325 (May 1966). https://doi.org/10.1029/JZ071i009p02317

https://doi.org/10.1063/1.50233
https://doi.org/10.1051/0004-6361/201937347
https://doi.org/10.1051%2F0004-6361%2F201937347
https://books.google.com.ua/books?id=JwQx-WOmSyQC
https://books.google.com.ua/books?id=JwQx-WOmSyQC
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1088/0004-637X/813/1/28
https://doi.org/https://doi.org/10.1016/B978-044450710-5/50008-7
https://www.sciencedirect.com/science/article/pii/B9780444507105500087
https://www.sciencedirect.com/science/article/pii/B9780444507105500087
https://doi.org/10.1051/0004-6361:20031251
https://doi.org/10.1051%2F0004-6361%3A20031251
https://doi.org/10.1051%2F0004-6361%3A20031251
https://doi.org/10.1051/0004-6361:20031173
https://doi.org/10.3847/2041-8213/ab964d
https://proceedings.neurips.cc/paper_files/paper/2017/file/6449f44a102fde848669bdd9eb6b76fa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/6449f44a102fde848669bdd9eb6b76fa-Paper.pdf
https://doi.org/10.1029/JZ071i009p02317


10 G. Mozgunov et al.

23. Labanti, C., Di Cocco, G., Ferro, G., Gianotti, F., Mauri, A., Rossi, E., Stephen,
J.B., Traci, A., Trifoglio, M.: The Ibis-Picsit detector onboard Integral. 411, L149–
L152 (Nov 2003). https://doi.org/10.1051/0004-6361:20031356

24. Lebrun, F., Leray, J.P., Lavocat, P., Crétolle, J., Arquès, M., Blondel, C.,
Bonnin, C., Bouère, A., Cara, C., Chaleil, T., Daly, F., Desages, F., Dzitko,
H., Horeau, B., Laurent, P., Limousin, O., Mathy, F., Mauguen, V., Meignier,
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