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Abstract. Neural networks are progressively assuming a larger role in
individuals daily routines, as their complexity continues to grow. While
the model demonstrates satisfactory performance when evaluated on the
test data, it often yields unforeseen outcomes in real-world scenarios. To
diagnose the source of these errors, understanding the decision-making
process employed by the model becomes crucial. In this paper, we con-
sider various methods of interpreting the BERT model in classification
tasks, and also consider methods for evaluating interpretation methods
using vector representations fastText, GloVe and Sentence-BERT.
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1 Introduction

As neural networks advanced, they increasingly achieved results comparable to
human performance and even surpassed them in certain domains. However, this
progress coincided with the growing complexity of models, characterized by an
exponential increase in the number of parameters employed in the network. Deep
learning models themselves are not easy to interpret because of their ”black
box” nature, and with such development it is almost impossible. The benefit
of interpretability in machine learning is that it increases the credibility of the
model. People are often afraid to rely on machine learning models when solving
certain critical tasks. In particular, there may be situations when a person is
faced with a new technology, and such an attitude can slow down the pace of its
implementation.

Interpretability methods can be evaluated from three points of view: application-
grounded, functionally-grounded or human-grounded [12, 3]. Application-grounded
evaluation estimates consequences in the target environment, for example expla-
nations in bank services. Functionally-grounded evaluation aims to check how
well the explanation reflects the model. Human-grounded evaluation estimates
if the explanations are understandable to humans.

In this paper, we consider the post-hoc interpretation methods in the text
categorization task and suppose that to be human-grounded the explanation
should be semantically related to the category’s name. A user should see semantic
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similarity between explanation and the category. We compare several known
ways of interpreting the results of the deep learning model: LIME [15], SHAP
[11] and the self-attention mechanism of BERT as a way of interpreting the
results [6] using this approach.

The interpretation methods considered in this paper yield a ranked list of
words with corresponding weights, which indicate the contribution of each word
to the model’s decision-making process. Subsequently, we select the top N words,
where N can take values from the set {1, 3, 5, 10}, that have contributed most
positively to the classification output of the interpreted model. In order to com-
pare these interpretation results with the category name, we employ two ap-
proaches.

In first approach, we utilize word and sentence embeddings, along with the
Normalized Discounted Cumulative Gain (NDCG) metric from information re-
trieval [7]. This allows us to evaluate the semantic similarity between the inter-
pretation results and the category name.

In second approach, we pass the entire interpretation result as a sentence to
the Sentence-BERT model, which generates a single embedding representation.
We then compare these selected words as sentence with the category name in
terms of their semantic similarity using embeddings.

2 Related Work

Various explanation methods have been proposed to address the need for in-
terpretability of machine-learning methods. However, it is quite difficult to un-
derstand what a method is most trustworthy. Yalcin and Fan [16] analyzed ex-
planations given by SHAP and LIME methods for classification of poisonous
mushrooms in the mushroom dataset. They found that for more than a third of
samples, SHAP and LIME give different explanations when comparing the most
important feature.

The authors of [4] study local-explanation methods on a wide range (304) of
OpenML datasets using six quantitative metrics. They revealed that LIME and
SHAP’s approximations are particularly efficient in high dimension and generate
intelligible global explanations, but they suffer from a lack of precision regarding
local explanations.

Natural language processing tasks have their own specificity, therefore the
approaches to their interpretability should be studied separately.

In [9] the authors consider several intepretability methods in text categoriza-
tion. Three tasks for evaluating intepretability were considered: 1) determining
the best classification model from several ones based on explanations; 2) iden-
tifying the category of an example based on explanation; 3) help in analysis of
examples with low probabilities. It was find that the LIME method obtained the
best results in the second task, it finds the best evidence for the class independent
of the class correctness. The study was implemented for two text categorization
datasets (Amazon reviews and arxiv papers) and involved crowdsourcers in the
first case and post-graduate students in the second case.
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Our study provides automatic evaluation of the task 2 defined in the above-
mentioned paper [9]. We calculate semantic similarity of words extracted by
interpretability methods with the category’s title.

3 Interpretation Algorithms

In our experiments we consider three known algorithms of interpretation: LIME
[15], SHAP [11] and self-attention weights [6].

3.1 LIME

LIME [15] (Local Interpretable Model-agnostic Explanations) is a method of
local interpretation independent of the machine learning model. Local inter-
pretability implies knowing the reasons for a specific decision. LIME presents a
locally faithful explanation by fitting a set of perturbed samples near the target
sample using a potentially interpretable model, such as linear models and de-
cision trees [10]. The interpreted explanation in LIME is presented in the form
of a binary vector showing the participation of any parameter in the result. For
example, a possible interpretable representation for text classification is a binary
vector indicating the presence or absence of a word, even though the classifier
may use more complex (and incomprehensible) features such as word embeddings
[15].

Let x ∈ Rd be the instance being explained, the explained model be denoted
by f : Rd → R and the explanation of the model is presented as a model g ∈ G,
where G is a class of interpreted models, such as linear models

g(x′) = ϕ0 +

d′∑
i=1

ϕix
′
i (1)

where x′ ∈ {0, 1}d′
is a binary vector of interpretable representation of x and

ϕi ∈ R.
Interpreted model g tries to ensure g(z′) ≈ f(x) whenever z′ ≈ x′. Since not

every g ∈ G can be simple enough to be interpreted, a measure of the complexity
Ω(g) of the explanation of g ∈ G is introduced. For linear models, Ω(g) may be
the number of non-zero weights. Next, πx(z) is used as a measure of proximity
between the perturbed sample z and x. L(f, g, πx) will be a measure of how
incorrectly g approaches f in the locality defined by πx.

ξ(x) = argmin
g∈G

L(f, g, πx) +Ω(g). (2)

Thus, the essence of the LIME approach is that we approximate the prediction
of the model f of the test case x by a simpler, easily interpreted model g, which
uses a simplified representation. The resulting explanation ξ(x) interprets the
target sample x with linear weights when g is a linear model.
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3.2 SHAP

SHAP[11] (SHapley Additive exPlanations) is a game theoretic approach to ex-
plain the output of any machine learning model. It connects optimal credit allo-
cation with local explanations using the classic Shapley values from game theory
and their related extensions. Shapley regression values are important character-
istics for linear models in the presence of multicollinearity. To calculate the Shap-
ley value, it is required to retrain the model for all subsets of features S ⊆ F ,
where F is the set of all features. These values assign an importance value to
each feature, which means the importance of including this feature in the model
forecast.

To calculate the Shapley value, the fS∪{i} model is trained with the pres-
ence of this feature, and the other fS model is trained without the feature.
Then the predictions from the two models are compared at the current input
fS∪{i}(xS∪{i}) − fS(xS), where xS represents the values of the input features
in the set S. The feature retention depends on other features in the model, the
previous differences are calculated for all possible subsets of S ⊆ F \{i}. Shapley
values are a weighted average of all possible differences:

ϕi =
∑

S⊆F\{i}

|S|!(|F | − |S| − 1)!

|F |!
[fS∪{i}(xS∪{i})− fS(xS)]. (3)

The exact computation of Shapley values is challenging. The work [11] introduces
a new perspective that unifies Shapley value estimation. They propose SHAP
values, that are the Shapley values of a conditional expectation function of the
original model. Let x ∈ Rd be the instance being explained, and x′ ∈ {0, 1}M will
denote a binary vector for its interpretable representation and h be the mapping
function x = hx(x

′). SHAP values are the solution of

ϕi(f, x) =
∑
z′⊆x′

|z′|!(M − |z′| − 1)!

M !
[f(hx(z

′))− f(hx(z
′ \ i))] (4)

where z′ ∈ {0, 1}M , z′ \ i denote setting z′i = 0, |z′| is the number of non-zero
entries in z′, and z′ ⊆ x′ represents all z′ vectors where the non-zero entries are
a subset of the non-zero entries in x′. In [11] authors propose that f(hx(z

′)) =
E[f(z)|zS ], where S is the set of non-zero indexes in z′.

3.3 Self-Attention

This method is an attempt to understand whether it is possible to use weights
in the attention mechanism as a local interpretation of transformer architecture
models. The method is based on the study [6] of the possible relationship be-
tween self-attention and feature selection methods from different points of view,
including the coincidence of vocabulary, similarity of ranking, relevance of the
subject area, the stability of features and the effectiveness of classification. First,
for each input sequence, the average weights for the 12 heads of attention in the
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last hidden layer are calculated. Next, a new matrix of weights is generated,
grouping subwords in a word by averaging the weights of the subwords. The
vertical average is taken as the weight of the word. Next, the top 10 words are
considered as an interpretation.

This method does not depend on the response of the model, but is specific
only to the transformer model. To illustrate this statement, figure 1, depicts
the mean weights of the 12 self-attention heads in the last hidden state of the
trained bert-base-uncased [2] BERT model and fine-tuned on the WOS [8] dataset
for ”Interpretability of thematic classification of texts based on neural networks”.
From the plot we can clearly see the so-called vertical pattern, where a few tokens
receive most of the attention, such as training, deep, transformer, language, and
understanding. In the work [6] they did not include special tokens < SEP > and
< CLS > because the amount of attention received by these tokens, will make
the attention received by the other tokens barely noticeable.

4 Method for Automatic Evaluation of Interpretability

After applying the interpretation methods and getting the result in a convenient
form for human perception, it is necessary to understand how satisfactory the
interpretation result is. As a method of evaluation, one can ask experts for
assessing how clear the interpretation of the result is to them, but this is a
rather resource-intensive and expensive method.

We suppose that the more explanation is similar to the category’s name in the
text categorization task, the more explanation is understandable for a human,
This allows us to evaluate explanation methods automatically. We consider the
top N ∈ {1, 3, 5, 10} output words sorted by the weights assigned to them by
the methods. These weights mean the importance of the word when making a
decision.

Fig. 1: An example of a matrix of weights in the form of an attention mechanism.
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4.1 NDCG

Since all the above-mentioned methods of interpretation return as a result a
ranking list of words with weights, we can compare these lists with the category
name using the NDCG measure adapted from information retrieval [7].

Let Di = {di1, ..., dim} be the set of items retrieved for the query qi and
{reli(1), ..., reli(m)} be their relevance labels. Let σ = {v1, ..., vm} be the ordered
items and the DCG@k metric (discount cumulative gain at the position k) of
the ordering is:

DCG@k(σ) =

k∑
j=1

rel(vj)D(j), (5)

where vj is the identifier of the item retrieved at the position j and D(j) =
1/log(1 + j) is the discount function. The NDCG@k metric is NDCG@k(σ) =
DCG@k(σ)/DCG@kp, where DCG@kp is a discount cumulative gain of the
ideal ordering according to true relevance labels rel(i).

In our case Di is a list of words of the text that we interpret, qi is the
category label of the text that our deep learning model predicted, rel(i) is the
cosine similarity between word di1 and qi embeddings. For calculation of ideal
word ordering, we extract all words from the target text and arrange them in
descending order of embedding similarity to the category’s label: this gives us
maximal DCG for the target text.

As embeddings, we use the pre-trained GloVe1[13], fastText2[5] and uni-
gram Sentence-BERT3[14] models. The unigram prefix before Sentence-BERT
means that we passed only one word to the model.

The selection of embedding models such as GloVe and fastText was made
based on several factors, including their historical significance in the field of
natural language processing and their widespread use as benchmarks in vari- ous
NLP tasks. There are newer models like MiniLM-L12-H384 offer improvements
in terms of size and quality, our decision to include these estab- lished models
was driven by the desire to provide a baseline for comparison. These models
serve as reference points for assessing the performance of newer approaches. We
recognize the importance of incorporating the latest models and advancements
in our research. In future work, we plan to expand our comparison to include
more recent models.

4.2 Sentence-BERT

Sentence-BERT[14] is a modified version of the BERT network that utilizes
siamese and triplet networks to generate sentence embeddings that capture se-
mantically meaningful information. Unlike traditional methods that treat sen-
tences as a sequence of words, Sentence-BERT takes into account the entire

1 http://nlp.stanford.edu/data/glove.840B.300d.zip
2 https://dl.fbaipublicfiles.com/fasttext/vectors-wiki/wiki.en.zip
3 https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2
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sentence as a unit during the encoding process. This allows it to capture the
overall meaning and nuances of the sentence, rather than just focusing on indi-
vidual words or tokens. By training the network on various tasks, such as sen-
tence similarity or text classification, Sentence-BERT learns to produce sentence
embeddings that are semantically meaningful and can be used for downstream
applications like information retrieval, clustering, or sentiment analysis.

In light of the possibility of using Sentence-BERT to obtain a vector repre-
sentation of sentences, we hypothesized that passing the results of interpreta-
tion methods as sentences and converting them to vector representations using
Sentence-BERT could be useful. In addition, we can obtain a vector representa-
tion of a text category using Sentence-BERT and calculate the semantic prox-
imity between the interpretation result and the category name. This will allow
us to evaluate the effectiveness of the interpretation methods. For calculation
the semantic similarity we use cosine similarity.

4.3 Example of Applying Interpretation And Evaluation Methods

The interpretation models were applied to a text sample from the 20NewsGroup
dataset with the ”baseball” label, and the model successfully predicted the cat-
egory as ”baseball” as well. The generated output list from the interpretation
models is presented in Table 1. Each column represents the output result of in-
terpretation, presented as a ranking list of words ordered in the rows by their
weights. The NDCG@10 evaluation results of Table 1 are presented in Table 2.

The text itself: ”Pitchers are required to pitch (or feint or attempt a pick-off)
within 20 seconds after receiving the ball, not 15. Pitchers are required to pitch
their warm-up throws within a one minute time frame, beginning after each half
inning ends, not two minutes. And the reason why a reliever should be allowed
warm-ups is simple: Different mound, different catcher. Ryan Robbins Penobscot
Hall University of Maine IO20456@Maine.Maine.Edu”

In the provided example (Table 1), we observe that the SHAP method pre-
dicts a relatively general word (”relieve”) as the top interpretation, while the
Self Attention method assigns a high score to the more specific term ”catcher”,
which is highly relevant to the baseball domain. The overall NDCG@10 score for
the Self Attention method is close to the ideal value across all embeddings, in-
dicating its strong performance. On the other hand, the SHAP method achieves
a significantly lower NDCG@10 score, but when used with Sentence-BERT em-
beddings, it approaches the ideal value.

In terms of the evaluation using Sentence-BERT (SBERT) approach, where
the interpretation results are passed as a sentence to Sentence-BERT and the
semantic similarity is calculated, the results closely align with the NDCG scores,
indicating a similar trend. Let SHAP sentence be ”relieve, catcher, mound, pitch-
ers, inning, ball, pitch, ups, throws, required”, the LIME sentence be ”inning,
pitchers, not, maine, of, are, hall, is, reliever, pitch”, the Self-Attention sentence
be ”catcher, ball, mound, pitchers, allowed, warm, off, pitch, inning, reliever”
and the category sentence be ”baseball”.
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cos(SBERT (SHAP ), SBERT (category)) = 0.56

cos(SBERT (LIME), SBERT (category)) = 0.51

cos(SBERT (Self −Attention), SBERT (category)) = 0.58

(6)

5 Datasets

Experiments were conducted on two datasets: 20NewsGroup [1] and WOS [8].
Web Of Science (WOS) dataset is a collection of academic articles abstracts

which contains three corpora (5736, 11967, and 46985 documents) for (11, 34,
and 134 topics). In our work we use WOS-11967 with 34 topics. In this dataset,
we have 70% for training and 30% samples are used for validation.

20NewsGroup dataset includes 18846 documents with maximum length of
1000 words. In this dataset, we have 14846 for training and 4000 samples are used
for validation. We also cleaned the text from the newsgroup-related metadata
contained in them, for more realistic data and so that the model does not learn
to classify them. For multiword category names in WOS dataset (for example,
Machine learning), we used averaging of component word embeddings for GloVe
and fastText models.

Table 1: Interpretation of text about baseball from 20NewsGroup dataset.
ideal-

unigram
Sentence-
BERT

ideal-GloVe ideal-
fastText

SHAP LIME Self-
Attention

pitchers pitchers catcher relieve inning catcher

inning catcher pitchers catcher pitchers ball

ball inning inning mound not mound

catcher ball reliever pitchers maine pitchers

pitch pitch pitch inning of allowed

mound reliever ball ball are warm

reliever mound mound pitch hall off

throws pick pick ups is pitch

ryan university university throws reliever inning

hall hall hall required pitch reliever

6 Experiments

For classification, we used bert-base-uncased BERT model [2] and fine-tuned it
on the datasets. For 20NewsGroup we got 71.3 accuracy, and for WOS-11967 we
got 86.3 accuracy.
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Table 2: NDCG results for text about baseball.
SHAP LIME Self-Attention

ideal-
unigram Sentence-

BERT

0.93 0.75 0.90

ideal-GloVe 0.74 0.77 0.93

ideal-fastText 0.74 0.75 0.88

After we got the trained models, we used standard methods from the SHAP1

and LIME2 libraries. For SHAP, we used the universal Explainer method, which
itself determined to use PartitionSHAP, faster version of KernelSHAP that hi-
erarchically clusters features. For LIME, it was set that maximum number of
features present in explanation equals 50 and size of the neighborhood to learn
the linear model equals 500. For both methods we provided the label that model
predicted, not the actual one. The output of interpretation modes can contain
words with repetitions, so it was decided to conduct an experiment also for a
unique output, when repeated words are removed from the explanation list.

Fig. 2: Interpretation results using GloVe embeddings.

1 https://github.com/slundberg/shap
2 https://github.com/marcotcr/lime
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Fig. 3: Interpretation results using fastText embeddings.

Fig. 4: Interpretation results using unigram Sentence-BERT embeddings.
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Table 3: The mean value of TopN interpretation results using NDCG evaluation.

(a) GloVe Results

LIME SHAP Self-Attention

20NG 0.630 0.600 0.520

20NG unique 0.637 0.607 0.525

WOS 0.602 0.560 0.552

WOS unique 0.620 0.570 0.557

(b) fastText Results

LIME SHAP Self-Attention

20NG 0.700 0.662 0.582

20NG unique 0.702 0.667 0.590

WOS 0.747 0.705 0.700

WOS unique 0.752 0.712 0.705

(c) unigram Sentence-BERT Results

LIME SHAP Self-Attention

20NG 0.752 0.717 0.650

20NG unique 0.755 0.722 0.660

WOS 0.712 0.652 0.667

WOS unique 0.717 0.662 0.675

Table 4: The mean value of TopN interpretation results using Sentence-BERT
evaluation.

(a) Joined by spaces

LIME SHAP Self-Attention

20NG 0.352 0.327 0.277

20NG unique 0.347 0.327 0.277

WOS 0.457 0.437 0.385

WOS unique 0.447 0.432 0.372

(b) Joined by commas

LIME SHAP Self-Attention

20NG 0.395 0.375 0.320

20NG unique 0.395 0.375 0.320

WOS 0.472 0.449 0.412

WOS unique 0.470 0.447 0.410

The results of the experiments using NDCG evaluation are shown on Fig-
ure 2 for GloVe embeddings, Figure 3 for fastText embeddings, Figure 4 for



12 A. Rogov et al.

unigram Sentence-Bert embeddings. The unique postfix means that the top
N ∈ {1, 3, 5, 10} interpretation output contains only unique words. The Table
3 presents the results, that are averaged across various values of N , where N
belongs to the set {1, 3, 5, 10}.

We can see that the first word in LIME explanations is much semantically
closer to the category label for both datasets and both embeddings. LIME
NDCG scores are higher at all levels than for SHAP, and almost at all lev-
els for Self Attention (except NDCG@10 for the WOS dataset). SHAP NDCG
scores are much lower at all levels than both other scores. This agrees with find-
ings from [9] based on human evaluation that LIME was the best method in
identifying the category of an example based on explanation.

The Table 4 presents the experimental findings of the evaluation conducted
on Sentence-BERT. The results are averaged across various values of N , where
N belongs to the set {1, 3, 5, 10}. The suffix ” unique” signifies that the top
N interpretation outputs comprise only unique words. Two approaches were
explored to combine the interpretation results into sentences: the first involved
joining them with spaces, while the second employed commas.

Joining by spaces involves separating words in a sentence with spaces but
not adding any additional punctuation. It is a common way to represent text
data in its original form for some natural language processing tasks. It is used
to preserve the original structure of sentences without introducing additional
separation symbols.

Joining words into sentences by commas involves using commas as delimiters
between words in a sentence. This method is used for specific text analysis tasks
to understand whether the presence of commas is meaningful. Maybe it can
help algorithms detect relationships between items in a list or better understand
sentence structure.

Comparing the two approaches revealed that using commas yielded slightly
superior outcomes. The scores consistently indicate that LIME outperforms both
SHAP and Self Attention, suggesting a consistent pattern.

7 Conclusion

In this research, we proposed an automated approach for assessing the inter-
pretability of interpretation methods in text categorization tasks. Our method
involves measuring the semantic similarity between explanations and category
labels using word embeddings and adapting the NDCG measure from informa-
tion retrieval. Additionally, we utilized Sentence-BERT embeddings by treat-
ing the explanation as a sentence. We conducted experiments on two datasets:
20NewsGroup and the WOS dataset consisting of scientific articles. Three widely
recognized interpretation methods, namely LIME, SHAP, and Self Attention,
were compared in our study. We employed GloVe, fastText, and Sentence-BERT
embeddings to calculate the semantic similarity.

Our findings indicate that the LIME technique outperforms the other meth-
ods in terms of NDCG scores. Moreover, when using Sentence-BERT evaluation,
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LIME consistently achieves higher scores for semantic similarity on both datasets
and across all embeddings. This suggests that LIME provides more effective ex-
planations for accurately capturing the assigned category in specific examples.

In the future, it is planned to continue the study of the interpretability of
machine learning models, including trying to adjust the parameters of the LIME
and SHAP methods and consider whether these results can be improved.
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7. Järvelin, K., Kekäläinen, J.: Cumulated gain-based evaluation of ir techniques.
ACM Transactions on Information Systems (TOIS) 20(4), 422–446 (2002)

8. Kowsari, K., Brown, D.E., Heidarysafa, M., Jafari Meimandi, K., , Gerber, M.S.,
Barnes, L.E.: Hdltex: Hierarchical deep learning for text classification. In: Machine
Learning and Applications (ICMLA), 2017 16th IEEE International Conference on.
IEEE (2017)

9. Lertvittayakumjorn, P., Toni, F.: Human-grounded evaluations of explanation
methods for text classification. In: Proceedings of the 2019 Conference on Em-
pirical Methods in Natural Language Processing and the 9th International Joint
Conference on Natural Language Processing (EMNLP-IJCNLP). pp. 5195–5205
(2019)

10. Li, X., Xiong, H., Li, X., Wu, X., Zhang, X., Liu, J., Bian, J., Dou, D.: Interpretable
deep learning: Interpretation, interpretability, trustworthiness, and beyond. Knowl-
edge and Information Systems 64(12), 3197–3234 (2022)

11. Lundberg, S.M., Lee, S.I.: A unified approach to interpreting model predictions.
Advances in neural information processing systems 30 (2017)

12. Madsen, A., Reddy, S., Chandar, S.: Post-hoc interpretability for neural nlp: A
survey. ACM Computing Surveys 55(8), 1–42 (2022)

13. Pennington, J., Socher, R., Manning, C.D.: Glove: Global vectors for word repre-
sentation. In: Proceedings of the 2014 conference on empirical methods in natural
language processing (EMNLP). pp. 1532–1543 (2014)

14. Reimers, N., Gurevych, I.: Sentence-bert: Sentence embeddings using siamese bert-
networks. arXiv preprint arXiv:1908.10084 (2019)

15. Ribeiro, M.T., Singh, S., Guestrin, C.: ”why should i trust you?” explaining the
predictions of any classifier. In: Proceedings of the 22nd ACM SIGKDD interna-
tional conference on knowledge discovery and data mining. pp. 1135–1144 (2016)



14 A. Rogov et al.

16. Yalcin, M.O., Fan, X.: On evaluating correctness of explainable ai algorithms: an
empirical study on local explanations for classification (2021)



Evaluating the Performance of Interpretability Methods 15

8 Reviewers remarks

Review 2

Q: How do I read Table 1? Should the rows contain the same? Or should the
columns in general be the same by words? Is the row order important?

A: The generated output list from the interpretation models is presented in
Table 1. Each column represents the output result of interpretation, presented as
a ranking list of words ordered in the rows by their weights.

Q: Table 3 has three subtables. It would be good to highlight the subtitles
in some way.

A: Added

Q: Table 4 - the same problem with subtitles. Also, it is not clear from the
text what the reason is for joining words into sentences by spaces and commas.

A: Joining by Spaces: This method likely involves separating words in a sen-
tence with spaces but not adding any additional punctuation. It is a common
way to represent text data in its original form for some natural language pro-
cessing tasks. It is used to preserve the original structure of sentences without
introducing additional separation symbols.

Joining by Commas: Joining words into sentences by commas involves using
commas as delimiters between words in a sentence. This method is used for
specific text analysis tasks to understand whether the presence of commas is
meaningful. Maybe it can help algorithms detect relationships between items in
a list or better understand sentence structure.

Q: Chapter 6 describes experiments and specifies datasets used. But there
are no details about the number of categories for estimating NDCG. And it is
unclear if anyone did an expert estimation of words within each category, at
least for ”ideal” cases.

A: The number of categories are provided in chapter 5 (datasets section)

Q: There are some concerns about selected embedding models. GloVe and
fastText are outdated.There are much more fresh models even with small size
like MiniLM-L12-H384 with better quality than an original BERT of 2018. And
why there are no comparison models published after 2020?

A: The selection of embedding models such as GloVe and fastText was made
based on several factors, including their historical significance in the field of
natural language processing and their widespread use as benchmarks in vari-
ous NLP tasks. While it’s true that newer models like MiniLM-L12-H384 offer
improvements in terms of size and quality, our decision to include these estab-
lished models was driven by the desire to provide a baseline for comparison.
These models serve as reference points for assessing the performance of newer
approaches. We recognize the importance of incorporating the latest models and
advancements in our research. In future work, we plan to expand our comparison
to include more recent models

Q: Another concern requires additional explanation about LIME and SHAP.
Both were originally used for very simple text vector models where direct inter-
pretation is easy. Is it legitimate to use them with neural network models?
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A: While LIME and SHAP were initially designed for simpler models, their
application to neural network models is legitimate and valuable. In the context of
complex neural networks, these methods offer a means to achieve interpretability
and understand why specific predictions are made. However, it’s important to
acknowledge that their effectiveness may vary based on neural network architec-
ture and complexity. Despite challenges, their use aids in model interpretability
and accountability.


