
Towards an Approach to Formulating Personal Develop-

ment Plan for Developers based on Competency Frame-

work and Data Mining

Erchimen Gavriliev1[0000-0001-7289-3969] and Tatiana Avdeenko1[0000-0002-8614-5934]

1 Novosibirsk State Technical University, K. Marksa ave., 20, 630073, Novosibirsk, Russia
erchimen_gavriliev@outlook.com

Abstract. Companies face difficulties in managing employees' professional

growth due to the large variety of career paths available in the IT industry, as well

as their high degree of flexibility and unpredictability. In this regard, a personal

development plan is used to manage the career advancement of developers. How-

ever, managers struggle to create plans that align with employees’ professional

aspirations. A competency framework was developed to increase relevancy of

the plans by providing a comprehensive view of possible career paths for devel-

opers and required competencies. The framework was implemented in a software

development company to assess its validity. It was discovered that a significant

proportion of developers had competencies related to communication, project

teamwork, requirements analysis, as well as to solving technical tasks such as

programming and debugging.

Keywords: software developer, competency matrix, competency model, data

mining, natural language processing, personal development plan

1 Introduction

Human resources and professional development system determine organization's effec-

tiveness. However, recent economic, technological, and social advances have resulted

in considerable changes in organizational processes and job profiles, complicating the

management process of employees' professional growth [1].

For instance, work environment, responsibilities, and skill requirements for IT spe-

cialists have changed over the years, which have fundamentally impacted many career

paths, making them more flexible and unpredictable [2,3].

Personal development plans (PDPs) are a frequent option in IT organizations; they

are meant to stimulate employee training, which in turn should increase staff perfor-

mance while taking into consideration their personal professional aspirations [4].

Nevertheless, development and implementation of PDP are complex tasks, which is

why only a small portion of tasks listed in the plans are completed, or implemented

plans have little impact on professional growth [5,6]. Managers frequently struggle with

PDP development: they are usually interested in using available specialists that already

have expertise for each specific project and each position in it. However, these special-

ists may also prefer to obtain other skills and/or work in other projects, but these pref-

erences are not stated in their PDPs.

2

One solution is to use a competency model, which provides a holistic view of differ-

ent career paths and required competencies for each grade – a generalized position that

unifies a group of professions.

However, existing studies mainly focus on programming-related competencies such

as coding, knowledge of mathematical and engineering foundations for software devel-

opment [7]. There are studies that consider soft competences such as team communi-

cation skills, planning, analytical skills and problem-solving abilities as well [8]. But

focusing only on either technical or soft competencies can lead to problems in profes-

sional development, because software development involves different tasks: gathering

and analyzing requirements, testing, mentoring and etc.

Furthermore, existing studies that provide a more comprehensive view of developer

competencies do not specify approaches or indicators for assessing them. Activities in

software development produce large number of artefacts, which can be analyzed using

data mining methods and tools to gather information about employees’ competencies.

The aim of this work is to increase the relevance of PDPs for developers by propos-

ing a competency framework and method for assessing competencies based on the data

mining of systems in which developers works on a regular basis.

In the rest of this paper, Section 2 gives background on publications related to de-

velopers’ competencies. Section 3 presents the developed competency framework,

methodology for its validation and the case company. Section 4 contains validation

results, and Section 5 concludes the paper.

2 Literature Review

Personal development plan is a tool used in the career management cycle to collect and

document information about the competencies that an employee has previously ac-

quired, as well as about the competences that he (she) is planning to develop in the

future. PDP includes following sections with posed questions [8]:

• main objectives – what competencies does an employee need to develop?

• list of tasks that an employee must complete, as well as deadlines– how does he (she)

want to develop those competencies and in which timeframe?

• possible risks and list of employees, that can assist in completing the tasks – which

support is needed?

Competency is important in professional development, but definitions vary [10]. We

will adopt a performance-based approach in this study and define competency as an

ability and willingness to apply knowledge and skills in solving professional problems

in various fields [11].

Competency model is a hierarchy of competencies expected of an employee that

contains descriptions of competencies as well as measurable or observable indicators

that may be used to evaluate workers [12].

Relevant research on necessary competencies for software developers usually fo-

cuses on technical competencies, such as programming fundamentals and software de-

sign [13, 14]. This list of competencies also includes debugging [15] and abilities to

3

analyze source code [16], because it is frequently required to make modifications to an

already developed system.

There are also publications that mainly consider soft competencies related to team-

work and communications [8, 17]. Other works discovered attributes and characteris-

tics, that are not related to coding, such as flexibility, proactivity ̧willingness to learn

and independence [18].

Nonetheless, there are studies that provide an extensive view of developers’ compe-

tencies, taking into account both technical and soft competencies.

Microsoft employees were polled about the attributes of a «great» software devel-

oper [19]. Based on the survey results, 54 attributes were found and divided into four

groups: «Personality», «Decision-making», «Teammate Interactions» and «Software

product». Attributes associated with software development, as well as the developer's

individual characteristics were given the highest level of importance, such as paying

attention to the quality of the source code, having necessary intellectual abilities to

solve complex problems.

Based on a survey of 355 software developers and the literature on expertise and

productivity, paper provides a conceptual theory of software development expertise

(SDExp) [20]. It was discovered that developer's effectiveness is determined by one’s

level of expertise and experience, as well as a number of individual characteristics, such

as openness and agreeableness.

Prior work on the methods for assessing developers’ competencies is mainly focused

on programming as well [21]. However, because developers have diversified their ac-

tives in other areas such as gathering and analyzing requirements, testing, mentoring

and etc., they may not be successful in assessing their qualifications as a whole. Due to

the low level of reliability and accuracy, another frequently used method based on the

subjective manager’s opinion may yield inaccurate results.

Data mining of repositories has been applied in several studies to measure the ex-

pertise of IT specialists [22]. It was argued that a specialist who has made a significant

contribution to the project's repository may have a greater level of «quality».

Based on literature review, it can be concluded that assessment method based on

systems’ data mining has a higher degree of objectivity than the manager’s opinion,

because the former method is based on quantitatively measurable indicators and rele-

vant data.

3 Development and Validation of Competency

Framework

3.1 Description of Competency Framework

First version of developer competency framework was designed using the findings of

prior studies [23] and literature review. It was a two-dimensional matrix that repre-

sented core expertise domains of software development. The first dimension of the ma-

trix was defined by 3 domains:

4

1. «Tasks’ complexity and approach to solving them», which included abilities to struc-

ture one’s own approach to work, ability to understand complex processes, systems

and ability to apply knowledge and skills to new situations.

2. «Interaction skills and collaboration with a project team», which included commu-

nicative competencies, competencies for professional collaboration.

3. «Development skills», which included knowledge of programming languages, soft-

ware architectures, internet protocols, database management systems and etc.

The second dimension represented developmental process and expected changes in

competency across four common grades:

1. «Junior» – entry-level developer.

2. «Middle» – employee with specialized knowledge and a broader range of responsi-

bilities.

3. «Senior» – experienced specialist with advanced technical competencies.

4. «Lead» – experienced specialist with advanced technical and managerial competen-

cies.

In order to refine and test competency framework, it was implemented in a medium-

sized company that develops software for the banking industry. The company uses its

own low-code application builder to develop software products. Tech stack of the ap-

plication builder included:

• relational database (Oracle or PostgreSQL) as a data storage;

• Java application server (Payara or WildFly) as a web application server;

• Rhino (an engine that converts JavaScript code into Java classes) and United Data

Model Script (an application builder’s programming language) were two program-

ming languages used in backend development;

• JavaScript and a built-in interface editor were used for frontend development.

To create a software product, the company's developers had to understand this tech

stack. A number of interviews were conducted with lead developers and project man-

agers in order to further refine the framework's set of competences. A new domain

«Other technical skills» was added to the first dimension of matrix, because in the case

company developers usually applied tools and technologies only from the mentioned

above tech stack, and knowledge of other tools outside the tech stack was optional, but

it could be useful in development. For example, developer could also work as a DevOps

engineer, which included setting up tools and appropriate infrastructure, as well as se-

lecting and deploying CI/CD solutions. As the number of competencies grew, it was

decided to categorize them into subdomains to improve clarity. New version of frame-

work consisted of 46 competencies and included following domains and subdomains:

1. «Tasks’ complexity and approach to solving them»:

a. «Task formulation» – ability to solve tasks with different levels of details in for-

mulation.

5

b. «Task management» – skills of administering tasks assigned to developer them-

selves, as well as to other members of project team. Ability to plan their time, set

up schedules, and complete tasks on time.

c. «Types of tasks» – characteristics of employee's activities.

d. «Level of independence in decision making» – characteristics of decisions made

regarding software product in development. Ability to accept responsibilities and

solve problems individually.

e. «Task management system» – ability to work and keep records in a task manage-

ment system.

2. «Interaction skills and collaboration with a project team»:

a. «Project team» – characteristics of communication and collaboration skills with

a project team.

b. «Client» – characteristics of communication and collaboration skills with a client

or other vendors. Understanding the goals of project and its structure from differ-

ent points of view.

c. «Mentoring» –capabilities of teaching and adapting new employees, of giving

feedback.

3. «Development skills»:

a. «Technology stack» –skills and knowledge of the applied technology stack for

development:

(1) «Knowledge of UDMS».

(2) «Knowledge of JavaScript».

(3) «Knowledge of SQL».

(4) «Debugging skills».

(5) «Knowledge of application builder’s instruments for developing».

(6) «UI development skills».

(7) «Knowledge of application builder’s architecture».

b. «Documentation» –level of documentation knowledge for an applied technology

stack.

c. «Integration with external systems» – knowledge and skills of setting up integra-

tion with external systems through various protocols:

(1) HTTP.

(2) JDBC.

(3) SOAP.

(4) LDAP.

(5) JMS.

4. «Other technical skills»:

a. «Infrastructure» – skills and knowledge of server administration:

(1) «Knowledge of Linux operating systems and command line interface».

(2) «Knowledge of administering Java application servers».

(3) «Knowledge of administering Database Management Systems».

(4) «Knowledge of tools for monitoring IT-infrastructure».

b. «Particular technologies» –skills and knowledge of technologies and tools used

in development: Git, ELK, Hazelcast etc.

6

A higher-level grade might include competencies from the previous grade. For ex-

ample, subdomains «Task formulation» and «Technology Stack» from the developed

framework are presented in Table 1.

Table 1 Fragment of the developer competencies framework

Domain Subdo-

main

Junior Middle Senior Lead

Tasks’

complex-

ity and

approach

to solving

them

Task

formula-

tion

Can work

with a

detailed task

formulation

Can work with a

short task

formulation

Can solve task

with a medium-

detailed formula-

tion individually

with high quality

and on time

Can work with a

task without de-

tailed formula-

tion

Can identify and

formulate a task

for himself

see

Senior

Develop-

ment

skills

Technol-

ogy stack

Basic

proficiency in

programming

language

Familiar with

code writing

culture in

company

Intermediate

proficiency in

programming lan-

guage

Familiar with re-

factoring

techniques

Can build basic

unit tests

Fluent in pro-

gramming lan-

guage

Can build

complex unit

tests

Can optimize

code

see

Senior

3.2 Validation Methodology

Activities in software development produce large number of artefacts, that can be pro-

cessed with data mining methods and tools, which in turn can provide information about

employees’ competencies.

Developers use version control system, task management system and knowledge

management system in their daily work. Version control system records changes in

application’ source code. Task management systems are used to organize the work of

the project team. Knowledge management system helps in organizing processes of cre-

ating, storing and transferring knowledge.

Data mining techniques were used to process information from these systems in or-

der to assess employees’ competencies and grade, and also to test and refine framework.

For extracting and analyzing data, previously developed decision support system (DSS)

was modified. DSS consisted of two subsystems: data download subsystem and com-

petency assessment subsystem [24].

Fig. 1 shows structural and functional model of the data download subsystem. At the

end of the day, the subsystem migrated information from external systems via REST-

7

services. Information about tasks, comments and work logs were downloaded from At-

lassian Jira (task management system), data about pages, articles and user activity were

extracted from Atlassian Confluence (knowledge management system), and source

code of applications were downloaded from multiple application builder repositories

(version control system).

Additionally, subsystem performed data transformation, i.e., replacing logical names

with physical ones in SQL queries, translating UDML code to JavaScript code, con-

structing abstract syntax trees for SQL queries and JavaScript code, analyzing software

complexity of constructed syntax trees and etc.

Fig. 1. Structural and functional model of the data download subsystem

As a part of data transformation process, the subsystem processed tasks descriptions,

comments and work logs in order to capture information about applied competencies.

Example of task’s summary and description is shown in Fig.2: developer has to prepare

XML schemas and develop separate module for integration with external system

«EDNA».

Tomita-parser was used for natural language processing and extracting facts. For

example, in description of competency from subdomain «Types of tasks» it is indicated,

that a «Middle» grade developer can install system updates on other environments. To

find this fact, a rule in Tomita-parser was prepared, based on which the parser searched

for agreed upon by case words in task descriptions and work logs, one of which should

be mentioned in keywords set «release»:

ModuleImport -> Word<c-agr[1]>* Word<kwset=[release], c-

agr[1], rt>;

S -> ModuleImport interp (DevTechRelease.Term::not_norm);

Compiled sets of keywords included names of technologies and tools in both English

and Russian:

TAuxDicArticle release

{

 key = "импорт модуль"

 key = "перенос модуль"

8

 key = "релиз"
 key = "module import"
}

Fig. 2. Example of task formulation

Download subsystem recorded number of found facts by Tomita-parser in accord-

ance with the prepared rule. A total of 44 rules for fact extraction were prepared.

Fig. 3 shows structural and functional model for competency assessment subsystem,

which conducted a sequential four-step evaluation procedure.

Fig. 3. Structural and functional model of the competency assessment subsystem

The first step was selecting an employee, whose competencies needed to be assessed,

and setting evaluation time period.

The second step was calculation of indicators. For the selected set of competencies

from the framework, 133 indicators were identified to determine whether or not a de-

veloper possessed necessary competencies. The subsystem used downloaded and pre-

pared data for calculations.

Information from the task management system were used to calculate indicators re-

lated to the task solution: number of tasks solved within evaluation period; average

number of tasks solved within and outside the estimated time frame; number of ex-

tracted facts in tasks, comments and worklogs, such as the number of tasks requiring

9

knowledge of Web Services Description Language, Lightweight Directory Access Pro-

tocol and etc.

Data from version control system were used to calculate following indicators: code

maintainability level; Halstead complexity measures; number of used Java libraries;

number of used functions for integration with external systems; number of developed

user functions; number of developed SQL search methods and etc.

Employee activity metrics such as the number of created pages and the number of

page content updates were calculated using information from the knowledge manage-

ment system.

The third step was calculation of competencies. In order to evaluate developer's com-

petencies, the assessment subsystem compared values of calculated indicators from the

previous stage with target values. For example, indicator «level of code maintainabil-

ity» should be more than or equal to 155 to establish whether a developer had the com-

petency «basic proficiency in programming language». Target values were determined

based on the analysis of collected data and interviews with leading experts from the

company. Because target values for several competences were not specified, it was de-

cided that values must be strictly larger than 0. If at least one of the indicators did not

fulfill the necessary requirement, it was recorded that the developer did not have com-

petency.

The last step was generation of report, which presented the results of the assessment.

As a result, sample included 661 evaluations of 100 developers of grades «Middle»,

«Senior» and «Lead» from 2019 to 2022. For every evaluation result a date interval

was determined, based on this date interval, decision support system downloaded data

and calculated metrics. To carry out the calculations, information on 225657 tasks,

4232 pages was downloaded task management and knowledge management system ac-

cordingly and source code was downloaded from 41 repositories.

4 Results

The following competencies were confirmed to a considerable extent in a sample of

321 evaluation results of «Middle» grade developers:

─ can consult the project team on current functionality. Can consult the customer on

working with the system (confirmed by 99% of the developers of this grade);

─ can analyze client requirements in order to design features (confirmed by 92%);

─ knows how to develop new functionality, if its estimated effort is less than 40 hours

(confirmed by 79%)

─ can mentor a «Junior» developer and adapt an experienced colleague to a new project

team (confirmed by 65%).

The competencies listed below were confirmed in the sample of 158 evaluation re-

sults of «Senior» grade developers:

─ can analyze requirements and estimate the effort required for implementation (con-

firmed by 96%);

10

─ can install updates on other environments and solve problems that arise during in-

stallation (confirmed by 94%);

─ understands projects’ business component. Understands project’s current stage and

makes decisions on release planning (confirmed by 80%);

─ can configure integrations with external systems (confirmed by 60%);

─ can administer Java application server (confirmed by 58%);

─ can use Java language elements in the application source code (confirmed by 56%).

The competencies mentioned below were confirmed for the sample of 182 evalua-

tion results of «Lead» grade developers:

─ can consult the project team on current functionality. Can consult the customer on

working with the system (confirmed by 99%);

─ can analyze requirements and estimate the effort required for implementation (con-

firmed by 98%);

─ can administer Java application server (confirmed by 77%);

─ can mentor a «Junior» developer and adapt an experienced colleague to a new project

team (confirmed by 76%);

─ can use diagnostic and debugging tools. Can gather complete diagnostic information

about the problem, monitor server status (confirmed by 70%);

─ understands projects’ business component. Understands project’s current stage and

makes decisions on release planning (confirmed by 70%);

─ documents the functional elements of the system (confirmed by 65%).

According to the findings, communication and teamwork skills are important in de-

termining a developer's qualification. The ability to communicate concisely and clearly

with colleagues and clients is critical for problem-solving and decision-making. There-

fore, competency related to consulting clients and project team was confirmed by the

majority of developers of all grades.

Mentorship is a common way of teaching and onboarding of new employees. Soft-

ware engineers who participate as mentors develop their knowledge and communica-

tion skills. During onboarding, mentees ask questions that allow mentors to take a dif-

ferent look at their professional skills and knowledge. However, this competence was

confirmed by only 42% of «Senior» developers, possibly indicating that in the case

company employees of this qualification are more focused on technical tasks.

Knowledge of development tools and how to use them in problem-solving are im-

portant aspects of a developer's qualification. As a result, competencies related to server

administration, installing updates, using Java and configuring integration with external

systems have been confirmed by most of the developers.

Gathering, analyzing requirements, and designing solutions also play a crucial role

in the success of system’s implementation. If errors in requirements are detected in the

latter stages of project, it may take a lot of effort to correct them and modify software

product. As a result, it is important for a developer to understand project’s business

component, analyze requirements and communicate with clients.

Due to the fact that the other competencies were not sufficiently confirmed, i.e., they

were confirmed by less than 50% of the developers of the corresponding grade, it was

11

decided to apply fuzzy logic for the assessment, as decision-making in this area is con-

sidered approximate, and results are expressed in linguistic terms.

Fuzzy logic model for assessing qualification level was developed in the MatLAB

environment using the Fuzzy Logic Toolbox package. For the output variable «qualifi-

cation level», the current version of the model examined two initial grades – «Junior»

and «Middle», since the case company have been restructuring the grade system and

only the first two grades remained unchanged.

Criteria system for calculating the qualification level included such variables as

«Technology stack», «Other technical skills», «Task Formulation» which were calcu-

lated using individually designed sub-models that used data from the systems. A devel-

oper, for example, was regarded to have the «Middle» competency grade if they had

completed a task related to this area of expertise an appropriate number of times and

had utilized their skills and knowledge in development.

For instance, used indicators for calculation of «Other technical skills» variable are

presented in Table 2.

Table 2. System of indicators for variable «Other technical skills»

Variable Value Range Term Set

Mentions of the designer update in as-

signed tasks and work logs

[0;10] Junior

Middle

Development of integration services [0;20] Junior

Middle

A sub-model was developed to compute the second variable «Development of inte-

gration services», which calculated a grade based on values of following indicators:

─ number of temporary types created;

─ number of applied functions for interaction with external systems via HTTP proto-

col;

─ mentions of Java programming language in assigned tasks, comments and work logs;

─ number of uploaded XSD schemas;

─ mentions of integrations in assigned tasks, comments, and work logs.

It is planned to further modify and validate the fuzzy logic-based system in order to

use for formulation of competency list, that developers will need to acquire for desired

grade.

5 Conclusion

The developer competency framework was developed and validated in the current

work. It was found that competences related to coding, requirements analysis, team-

work, communication skills and mentoring are considered important for developer.

The framework allows software developers to determine which competencies are

necessary for an experienced professional and which competencies they may need to

acquire in order to become a more competent specialist.

12

Using the framework and developed system, managers can assess an employee's

qualification and formulate relevant tasks for professional development. Mismatches

between observed and desired grade competencies can be used to establish the main

objectives of personal development plans.

The system will be refined in the future to evaluate qualification level using fuzzy

logic to determine the necessary competencies that developers need to acquire.

References

1. Gastaldi L., Corso M. Smart healthcare digitalization: using ICT to effectively balance ex-

ploration and exploitation within hospitals. International Journal of Engineering Business

Management, vol. 4, pp. 1–13 (2012).

2. Gubler M., Coombs, C., Arnold J. The gap between career management expectations and

reality – empirical insights from the IT industry. Gr Interakt Org 49, pp. 12–22 (2018).

3. Loogma K., Ümarik M., Vilu, R. Identification-flexibility dilemma of IT specialists. Career

Development International, 9 (3), pp. 323–348 (2004).

4. Beausaert S.A.J, Segers M.R.S, Grohnert T. Personal Development Plan, Career Develop-

ment, and Training. The Wiley Blackwell Handbook of the Psychology of Training, Devel-

opment, and Performance Improvement. pp. 336–353 (2014).

5. Kostrzewski A.J., Dhillon S., Goodsman D. Taylor, K.M.G. The influence of continuing

professional development portfolio records on pharmacy practice. The International Journal

of Pharmacy Practice, Vol. 17 No. 2, pp. 107-13 (2009).

6. Austin Z., Marini A., Desroches B. Use of a learning portfolio for continuous professional

development: a study of pharmacists in Ontario (Canada). Pharmacy Education, Vol. 5, pp.

175-181 (2005).

7. Bourque P., Fairley R. E. Guide to the Software Engineering Body of Knowledge. Version

3.0. IEEE Computer Society, (2014).

8. Sedelmaier Y., Landes D. Software Engineering Body of Skills (SWEBOS). In 2014 IEEE

Global Engineering Education Conference (EDUCON), pp. 395–401 (2014).

9. Beausaert S.A.J., Segers M.S.R., Gijselaers W.H. Using a Personal Development Plan for

Different Purposes: Its Influence on Undertaking Learning Activities and Job Performance.

Vocations and Learning. 4 (3). pp. 231–252 (2011).

10. Shippmann J.S., Ash R.A., Battista M. et al. The practice of competency modeling. Person-

nel Psychology, 53, pp. 703–740 (2000).

11. Bartram D., Robertson I.T., Callinan, M. Introduction: A Framework for Examining Organ-

izational Effectiveness. In Organizational Effectiveness (2002).

12. Markus L.H., Cooper-Thomas H.D., Allpress K.N. Confounded by competencies? An eval-

uation of the evolution and use of competency models. New Zealand Journal of Psychology,

34, pp. 117–126 (2005).

13. Robillard M. P., Coelho W., Murphy G. C., Society I. C. How effective developers investi-

gate source code: an exploratory study. IEEE Transactions on Software Engineering, vol.

30, no. 12, pp.889–903 (2004).

14. Surakka S. What subjects and skills are important for software developers? Communications

of the ACM, vol. 50, no. 1, pp.73–80 (2007).

15. Ahmadzadeh M., Elliman D., Higgins C. An analysis of patterns of debugging among nov-

ice. SIGCSE, pp. 84–88 (2005).

16. Robillard M.P., Coelho W., Murphy G.C. How effective developers investigate source code:

an exploratory study. Society IC, vol. 12, no. 30, pp.889–903 (2004).

13

17. Ahmed F., Capretz L. F., Campbell P. Evaluating the demand for soft skills in software

development. IT Prof, vol. 14, no. 1, pp.44–49 (2012).

18. Matturro G., Raschetti F., Fontán C. A Systematic Mapping Study on Soft Skills in Software

Engineering. Journal of Universal Computer Science, vol. 25, pp. 16–41 (2019).

19. Li P. L., Ko A. J., Begel A. What Makes A Great Software Engineer? 37th International

Conference on Software Engineering, pp.700-710 (2015).

20. Baltes S., Diehl S. Towards a theory of software development expertise. Proceedings of the

2018 26th ACM Joint Meeting on European Software Engineering Conference and Sympo-

sium on the Foundations of Software Engineering, ESEC/FSE 2018, 2018.

21. Bergersen G. R., Sjøberg D. I. K., Dybå T. Construction and validation of an instrument for

measuring programming skill. IEEE Trans. Softw. Eng., vol. 40, no. 12, pp. 1163–1184

(2014).

22. Gousios G., Kalliamvakou E., Spinellis D. Measuring developer contribution from software

repository data. In Proceedings of the 2008 international working conference on Mining

software repositories, MSR ’08, pp.129-132 (2008).

23. Gavriliev E.I., Avdeenko T.V. Model and Procedure for Assessing the Qualification of a

Software Developer. 2022 IEEE 23rd International Conference of Young Professionals in

Electron Devices and Materials (EDM), pp. 303–307 (2022).

24. Gavriliev E.I., Avdeenko T.V Procedure for assessing the qualifications of a software de-

veloper. Nauka. Tekhnologii. Innovacii: Collection of scientific papers. In 10 parts, Novo-

sibirsk, December 06–10, 2021. pp. 145–148 (2021).

