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Abstract. Genetic Algorithms (GAs) are known for their efficiency in
solving combinatorial optimization problems, thanks to their ability to
explore diverse solution spaces, handle various representations, exploit
parallelism, preserve good solutions, adapt to changing dynamics, han-
dle combinatorial diversity, and provide heuristic search. However, limita-
tions such as premature convergence, lack of problem-specific knowledge,
and randomness of crossover and mutation operators make GAs generally
inefficient in finding an optimal solution. To address these limitations,
this paper proposes a new metaheuristic algorithm called the Genetic
Engineering Algorithm (GEA) that draws inspiration from genetic en-
gineering concepts. GEA redesigns the traditional GA while incorporat-
ing new search methods to isolate, purify, insert, and express new genes
based on existing ones, leading to the emergence of desired traits and the
production of specific chromosomes based on the selected genes. Com-
parative evaluations against state-of-the-art algorithms on benchmark
instances demonstrate the superior performance of GEA, showcasing its
potential as an innovative and efficient solution for combinatorial opti-
mization problems.

Keywords: Genetic Algorithm · Metaheuristic Algorithms · Genetic
Engineering · Combinatorial Optimization.

1 Introduction

Combinatorial optimization problems belonging to the class of NP-hard ones
pose significant challenges in various domains, requiring efficient algorithms to
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find optimal or near-optimal solutions. Genetic Algorithms (GAs) [1] have
emerged as a popular choice due to their ability to explore diverse solution
spaces, adapt to changing dynamics, and provide heuristic search. However, the
limitations of GAs, including computational complexity, premature convergence,
lack of problem-specific knowledge, and the need for parameter tuning, moti-
vate the search for innovative approaches to enhance their efficiency [2]. These
drawbacks encourage our attempts to redesign GA using the genetic engineering
concept to be highly efficient for solving combinatorial optimization problems.

According to the literature on metaheuristic algorithms, GAs stand as the
earliest population-based algorithms prioritizing the discovery of satisfactory so-
lutions within a reasonable computational timeframe, rather than exclusively
pursuing optimality [3]. While the field boasts an array of novel metaheuristic
algorithms [4]– [18], it is worth noting that the literature on GAs is excep-
tionally rich, featuring numerous research contributions that introduce various
GA variants equipped with advanced genetic programming and engineering tech-
niques [19]– [27]. For instance, Gero and Kazakov [28] conducted a study focusing
on the identification of useful genetic material while minimizing the presence of
harmful genetic components, leading to the proposition of a novel GA. Kameya
and Prayoonsri [29] introduced a GA-based approach grounded in pattern recog-
nition to identify essential patterns within favorable chromosomes and protect
them from undesirable crossovers. Ding et al. [30] delved into the integration of
a back-propagation (BP) neural network with GA. Liang et al. [31] proposed a
suite of adaptive elitist-population strategies that found application within the
GA framework.

Additionally, Dasgupta et al. [32] integrated a load-balancing strategy for
cloud computing with GAs. Elsayed et al. [33] enhanced GAs with a novel multi-
parent crossover operator. Peng and Li [34] put forth an improved DV-Hop algo-
rithm based on GAs, while Askarzadeh [35] explored memory-based GAs. Reddy
et al. [36] developed a hybrid GA infused with fuzzy logic, and Fathollahi-Fard et
al. [37] proposed a hybrid of GA with other innovative metaheuristics. Further-
more, Fathollahi-Fard et al. [38] devised a revised non-dominated sorting genetic
algorithm by introducing novel search operators. Last but not least, Kolaee et
al. [39] introduced a local search-based non-dominated sorting genetic algorithm
tailored to solving routing problems within the tourism industry. However, none
of the studies reviewed thus far have proposed the introduction of new search
operators grounded in a diverse array of methods aimed at isolating, purifying,
inserting, and expressing new genes within existing GA chromosomes, as we have
undertaken in this study.

Recently, a wide range of population-based algorithms has been proposed
to address challenging optimization problems. Examples include Cuckoo Search
(CS) [4], Whale Optimization Algorithm (WOA) [5], Sine Cosine Algorithm
(SCA) [6], Harris Hawks Optimization (HHO) [7], Squirrel Search Algorithm
(SSA) [8], Red Deer Algorithm (RDA) [9], Sparrow Search Algorithm (SSA)
[10], Capuchin Search Algorithm [11], Aquila Optimizer (AO) [12], Chameleon
Swarm Algorithm (CSA) [13], Aptenodytes Forsteri Optimization (AFO) [14],
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Dung Beetle Optimizer (DBO) [15], Beluga Whale Optimization (BWO) [16],
and others. However, it is essential to note that the “No Free Lunch” theorem
[17] suggests that no metaheuristic algorithm can outperform others for all op-
timization problems. Hence, there is a constant demand for the development of
new metaheuristic algorithms that exhibit improved performance across different
problem domains [18].

In this paper, we propose a new metaheuristic algorithm, the Genetic En-
gineering Algorithm (GEA), inspired by genetic engineering concepts. Genetic
engineering encompasses a diverse range of methods used to isolate, purify, in-
sert, and express new genes based on existing ones, resulting in the emergence
of desired traits and the production of specific chromosomes based on the se-
lected genes. By drawing parallels from this field, we aim to redefine the opti-
mization process and overcome the limitations inherent in traditional GAs. The
techniques used in GEA enable more precise manipulation of the optimization
process, leveraging problem-specific insights and reducing randomness in muta-
tion and crossover operations. By introducing the concept of gene manipulation
within the population, GEA aims to enhance the exploration and exploitation
of the solution space, leading to improved convergence and solution quality. To
evaluate the effectiveness of GEA, we conduct extensive experiments on a set of
benchmark instances and compare its performance against state-of-the-art meta-
heuristic algorithms. The results demonstrate the superior performance of GEA
in terms of convergence speed, solution quality, and robustness. This signifies
the potential of GEA as a novel and efficient approach for solving combinatorial
optimization problems.

The rest of the paper is organized as follows: Section 2 presents the main in-
spiration of our GEA based on the genetic engineering concept. Section 3 studies
the design and implementation details of the proposed GEA based on genetic
engineering operators. Section 4 presents the experimental setup and discusses
the comparative results with other algorithms. Finally, Section 5 concludes the
paper, by emphasizing the significance of GEA as an innovative solution for effi-
cient combinatorial optimization problems and outlining potential directions for
future research.

2 Inspiration

Genetic engineering (GE) has transitioned from speculative fascination to a
groundbreaking reality with wide-ranging applications. This methodology ex-
hibits significant potential in disease treatment, exemplified by cancer immunother-
apy [19], and the utilization of CRISPR technology to eliminate the HIV virus
from infected cell genomes, offering prospects for a cure [20]. It extends to the
realm of human genetics, impacting characteristics in newborns [21], and holds
promise in agriculture for producing high-yield crops [22]. For instance, the devel-
opment of Golden Rice, engineered to combat vitamin A deficiency and prevent
blindness worldwide, underscores GE’s potential [23].
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Dominant chromosomes wield a pivotal influence on genetics, shaping spe-
cific trait expressions. Through meticulous manipulation, scientists can surpass
or enhance genetic characteristics for desired outcomes. Precision in specifying
dominant chromosomes related to plant yield, for instance, has led to high-yield
species addressing global challenges such as climate change, pollution, and food
shortages [24].

Directed mutations entail precise DNA alterations in organisms to induce
advantageous changes. Researchers can introduce specific mutations in genes to
promote beneficial traits or suppress harmful ones. This approach finds appli-
cations in medicine, agriculture, and environmental conservation. By directing
mutations in disease-causing genes, scientists are developing innovative treat-
ments for genetic disorders like cystic fibrosis and muscular dystrophy. Achieving
this involves two critical steps: identifying crucial genes for enhancing traits and
carefully manipulating non-informative genes to achieve desired outcomes [23].

Desired genes possess specific qualities or capabilities that scientists aim to
introduce into an organism. These genes enhance crop resistance in agriculture,
contributing to sustainable farming and increased food production. In medicine,
they hold the key to curing genetic disorders [25]. Targeting desirable genes
through mutation takes genetic engineering to a new level of precision. Tech-
niques like CRISPR-Cas9 [26] enable precise gene editing, allowing correction of
mutations responsible for diseases like sickle cell anemia or Huntington’s disease,
offering hope to millions [24].

Gene injection, another innovative approach, delivers therapeutic genes di-
rectly into the body to treat or prevent diseases. This method holds promise for
conditions like cancer and cardiovascular disorders. By injecting genes producing
therapeutic proteins, scientists can enhance natural defense mechanisms, stimu-
late tissue regeneration, or target cancer cells. Gene injection therapy represents
a powerful tool in personalized medicine [25].

In conclusion, genetic engineering is a groundbreaking reality with diverse
applications in medicine, agriculture, and environmental conservation. Through
dominant chromosomes, directed mutations, and desired gene identification, sci-
entists shape genetics for high-yield crops and disease treatment. Techniques like
precise gene editing and gene injection therapy enable unprecedented precision
and customization. As genetic engineering advances, it promises to revolutionize
various domains, ushering in an era of personalized medicine and sustainabil-
ity. Building on these GE techniques, this paper proposes a novel metaheuristic
algorithm, GEA.

3 Proposed GEA

While the GA [1] is a well-established evolutionary algorithm that commonly
employs classical mutation and crossover operators, this study proposes a novel
approach by incorporating GE techniques. The overall flowchart for the pro-
posed GEA is shown in Figure 1. One can skip any operator from Crossover to
Gene Injection to customize the algorithm for different purposes and check the
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Fig. 1: Flowchart for the proposed GEA.
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performance of the method with partial operators. The GEA similar to other
meta-heuristics starts with an initial population that is the counterpart of this
method. This algorithm encompasses a diverse range of methods used to iso-
late, purify, insert, and express specific genes within a host organism, ultimately
leading to the emergence of desired traits and the production of specific chromo-
somes based on the selected genes. The flowchart of the proposed GEA is shown
in Figure 1.

After generating the initial population, all individuals will be evaluated based
on the specific fitness function. It is worth noting that each problem is defined
by a specific and unique fitness function to present a solution in combinatorial
optimization. We can classify different integer programming problems such as
vehicle routing optimization, flow-shop scheduling problems, knapsack problems,
and facility location planning as combinatorial optimization problems [18]. The
chromosome definition or the solution presentation in each type of combinato-
rial optimization problem is different. For example, the chromosome in routing
optimization is defined as the sequence of visits [2]. In flow-shop scheduling
problems, the chromosome is considered as the sequence of a set of jobs on ma-
chines [18]. In addition, the solution definition in facility location planning and
knapsack problems is defined by 0-1 or binary variables [3]. In our GEA, the
examples for explaining the search operators are based on a binary chromosome
where each gene may be zero or one. In this new metaheuristic algorithm, in
addition to mutation and crossover operators, we have three genetic engineering
operators as three scenarios explained as follows:

Senario 1. Finding Dominant Chromosome (most repeated genes):
The first scenario of GEA focuses on identifying the dominant chromosome by
considering a percentage, denoted as p%, of the best individuals in the popula-
tion. The value of p is initially defined by the user and can be optimized based
on the specific problem at hand. A chromosome is deemed dominant if it pos-
sesses the highest number of repeated genes among the best p% of individuals.
The process of identifying the dominant genes and constructing the dominant
chromosome is outlined by Equations (1) and (2). To provide clarity on this oper-
ation, Figure 2 illustrates an example of finding the dominant chromosome from
the elite population. Additionally, the pseudocode for this operation is presented
in Algorithm 1.

RMi = [ΣM
j=1genej ] (1)

DC = max(RM) (2)

Where M, RM, and DC represent the number of individuals in p% of the
population, repetition matrix, and dominant chromosome respectively.

Senario 2. Directed Mutation: The second scenario in GEA focuses on
improving the effectiveness of the mutation operator, which is essential for pre-
venting the algorithm from getting trapped in local optima. In traditional GAs,
random mutation is often used, which can be a drawback. To address this limi-
tation, the mutation operator in GEA is targeted and modified to enhance the
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Fig. 2: Finding dominant genes from p% population.
efficiency of the genetic algorithm. In this scenario, specific methods are pro-
posed to direct the mutation process, rather than relying on random selection.
One such method involves the detection of desired genes, which enables the
algorithm to focus on genes that are known to contribute to desired traits or
outcomes. By targeting the mutation process and removing the randomness as-
sociated with traditional mutation, the performance of the genetic algorithm can
be significantly improved. To provide an illustration of the directed mutation op-
erator, Figure 3 presents an example that demonstrates how the process works.
This targeted mutation approach allows the algorithm to prioritize specific genes
and introduce beneficial changes in a controlled manner. By doing so, GEA can
overcome the limitations of random mutation and enhance its ability to explore
the solution space effectively.

f(x) =

{
1 if Mij desired
0 otherwise (3)

– Desired Gene: The first step for applying this operator is to find the most
repeated genes out of p% of the best chromosomes which are considered
desired genes. The goal here is to consider fixed genes because these genes
are considered the most informative elements for generating the elite part of
the population. So, their existence in the solution will help the population
to stay in the elite part, and by the slight change, they may move towards
the global optimum in the near future. This step will generate a pattern
matrix with n ∗ m. where n is the number of populations in the elite part
of the whole population (best p%), and m is the number of genes inside a
chromosome which is known as the number of the variables in the problem.
This pattern matrix consists of binary elements, in which 1 represents the
specific chromosome that is desired and should be fixed, and 0 represents
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uninformative genes for which mutation is allowed to be applied. Equation
(3) represents how the pattern matrix will be generated. If the number of
repetitions reaches a specific threshold then the gene will be desired. The
threshold will be specified by the user from the beginning and the parameter
can be optimized based on different problems and purposes.

– Mutation Targeting Desirable Genes: After generating the pattern for
p% chromosomes with the highest fitness values, a candidate by the roulette
wheel will be selected, the mutation applies only on uninformative genes
which represent zero in their corresponding pattern matrix. By applying
targeting mutation we hope to search the solution space in the proper manner
to find the global optimum. The engineered mutation will be repeated to the
number of overall mutations only on uninformative genes to invest in the
elite part of the population for faster convergence.

Senario 3. Gene Injection: The third scenario in GEA focuses on the im-
portance of considering the entire population, including the individuals with the
worst fitness values. While the first two scenarios primarily focus on the elite
part of the population, it is essential to recognize that even the worst solutions
can contribute to the overall improvement of the algorithm. In optimization algo-
rithms, the worst individuals should not be overlooked, as they also possess the
potential for beneficial changes. In this scenario, we aim to invest in the worst
individuals and employ an engineering approach to enhance their performance.
By making slight changes to the worst individuals, they have the opportunity
to move towards the global optimum and eventually become part of the elite
solutions in subsequent iterations of the algorithm.

To accomplish this, a patterns matrix is constructed for the elite part of the
population. Then, individuals from the non-elite part of the population (rep-
resenting 1 − p%) are selected. Based on the pattern matrix, genes from the
chromosome with the highest repetition are injected into the selected chromo-
some. This gene injection operator facilitates the transfer of beneficial genetic
information from the dominant chromosome to other individuals in the pop-
ulation, enabling them to improve and contribute to the overall optimization
process. Figure 4 provides an example that illustrates how this proposed gene
injection operator works. It demonstrates the process of transferring genetic in-
formation to enhance the selected chromosome. The dominant chromosome, as
coded in Algorithm 1, is necessary for the implementation of this gene injection
operator.

By incorporating this third scenario into the GEA, we can harness the po-
tential of even the worst solutions in driving the algorithm toward the global
optimum. This approach allows for a more comprehensive exploration of the
solution space and facilitates the improvement of the entire population over suc-
cessive iterations.
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Fig. 3: Directed mutation by fixing informative genes.
Algorithm 1 Dominant Chromosome
Data: Pop, Prob. Info.
Result: DominantGene, Mask, MaskInverted

while i less than chromosome length do
while j less than No. of Pop. do

Genes← [Genes, Popj(i)]
end
while there is element in Genes do

temp← sum(Genes == Genes(1))
if size DominantGene == 0 then

DominantGene← Genes(1)
DominantGeneCounter ← temp

else
if temp > DominantGeneCounter then

DominantGene← Genes(1)
DominantGeneCounter ← temp

else
DominantGene← [DominantGene,Genes(1)]

end
end

end
end
Mask ← zeros(1, size(chromosome))
while i less than chromosome length do

if (DominantGeneCount > threshold) and (threshold not 0) then
Mask(i)← 1

end
end
MaskInverted← notMask
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Fig. 4: Injecting informative genes to wort individuals of the population.

4 Experimental Results

Here, we present a comprehensive evaluation of the GEA and demonstrate its
efficacy in solving combinatorial optimization problems, particularly in the con-
text of a standard vehicle routing optimization problem. This problem involves
determining optimal routes for a fleet of vehicles to visit a set of demand points
while minimizing transportation costs. To evaluate the performance of GEA, we
compare it not only against the traditional GA but also against three variations
of GEA, namely GEA1, GEA2, and GEA3, each utilizing a specific scenario as
explained earlier. In GEA, the main loop randomly selects one of these scenarios
at each iteration.

For our evaluation, we select six well-established instances from the litera-
ture, as referenced by [18] and [9], to benchmark the algorithms. To ensure
consistency, we set the maximum number of iterations to 1000 and the popula-
tion size to 100 for all algorithms. The crossover and mutation percentages are
uniformly set to 0.8 and 0.1, respectively, across all algorithms. Moreover, in the
case of GEA, the percentages of scenarios considered are 0.5, 0.5, and 0.2 for the
first, second, and third scenarios, respectively.

To gauge the performance of the algorithms, we conduct 10 independent runs
of each algorithm on every test instance. Subsequently, we report the best, worst,
average, and standard deviation of the solutions obtained by each algorithm
in Table 1. These results enable us to analyze the robustness of the applied
metaheuristic algorithms. Furthermore, Figure 5 illustrates the convergence rate
of each algorithm towards its best performance, providing a visual representation
of their effectiveness. To complement our analysis, we perform statistical analyses
using a 0.95 confidence level, employing normalized standard deviations across all
algorithms. The interval plot in Figure 6 showcases the results of these statistical
analyses, shedding light on the comparative performance and reliability of the
algorithms.

Based on the results presented in Table 1, our findings indicate that GEA,
when utilizing all scenarios, outperforms the other algorithms. In most instances,
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Table 1: Report of the algorithms results based on criteria of the Best=B,
Worst=W, Mean=M, and Standard deviation=Std. (The best values in each
criterion and test instance are highlighted in bold.)

Test instance F1 F2 F3 F4 F5 F6
Demand points x
Number of vehicle 8x3 10x3 14x4 20x4 25x5 30x5

GA

B 257.3492 268.1687 301.6661 317.6503 326.5457 308.8542
W 291.6624 269.0742 316.0882 351.2298 363.0131 343.9097
M 260.7805 268.7120 305.8615 333.5178 338.1742 321.1532
Std 10.8507 0.4675 5.4002 12.3733 11.3976 11.5798

GEA_1

B 257.3492 268.1687 301.6661 319.3303 319.5602 307.1991
W 257.3492 269.0742 318.8057 342.2278 359.0854 370.7047
M 257.3492 268.2593 304.7409 324.0378 330.8722 328.0479
Std 5.99E-14 0.2863 5.4787 6.8149 10.8851 21.2861

GEA_2

B 257.3492 268.1687 301.6661 317.1235 321.5556 302.5377
W 257.3492 269.0742 306.3834 353.7992 359.0854 322.7266
M 257.3492 268.3498 302.8296 327.4803 333.1713 311.4745
Std 5.99E-14 0.3817 1.6555 12.1645 13.4915 7.3910

GEA_3

B 257.3492 268.1687 301.6661 317.6503 319.0169 308.8834
W 257.3492 269.0742 306.3834 331.8416 331.3571 346.2497
M 257.3492 268.4404 302.3684 323.3476 326.245 323.5826
Std 5.99E-14 0.4373 1.58597 5.45505 4.1059 13.7657

GEA

B 257.3492 268.1687 301.6661 317.6503 317.7347 304.4598
W 257.3492 268.1687 301.6661 331.8416 331.4877 343.6004
M 257.3492 268.1687 301.6661 321.4611 323.1822 313.4242
Std 5.99E-14 5.99E-14 0 4.7726 6.0097 11.8294
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Fig. 5: Convergence rate of the metaheuristic algorithms in all the benchmarked
instances.



Genetic Engineering Algorithm (GEA) 13

Fig. 6: Interval plot based on 95% confidence level for analyzing the robustness
of the metaheuristic algorithms
this algorithm consistently discovers near-optimal solutions superior to those ob-
tained by GA and the other GEA variants. Among the GEA variations, GEA2
stands out as the most successful, confirming the strength of the second sce-
nario in exploring better near-optimal solutions. Figure 5 demonstrates that
all algorithms exhibit an acceptable convergence rate across the test instances,
with similar solution quality. However, the statistical analyses from Figure 6
conclusively support the highest accuracy of our GEA compared to the other
algorithms.

In conclusion, our comprehensive evaluation showcases the effectiveness of
the GEA in solving combinatorial optimization problems, specifically the vehicle
routing optimization problem. The results presented in Table 1 and Figures 5 and
6 highlight the superior performance and accuracy of GEA, particularly when
incorporating all scenarios. These findings provide compelling evidence for the
potential of GEA as a robust and reliable metaheuristic algorithm for addressing
optimization challenges.

5 Conclusion and Future Work

This study presented a comprehensive evaluation of the GEA and its effectiveness
in solving combinatorial optimization problems, focusing on the vehicle rout-
ing optimization problem. The results obtained through benchmarking against
the traditional GA and different variations of GEA demonstrated the superi-
ority of GEA, particularly when incorporating all scenarios. GEA consistently
outperformed other algorithms, yielding better near-optimal solutions in most
instances.

The findings of this study contribute to the growing body of research on
metaheuristic algorithms and their applications in optimization problems. The
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success of GEA in addressing the vehicle routing optimization problem show-
cases its potential in real-world scenarios where efficient transportation routing
is critical. These results provide valuable insights into the efficacy of genetic en-
gineering techniques based on our three scenarios for the development of GEA
in solving combinatorial optimization problems and highlight the importance of
considering different scenarios in the algorithm design.

Moving forward, several areas for future research can be identified. Firstly,
further investigation can be conducted to explore the impact of different pa-
rameter settings on the performance of GEA and its variations. Fine-tuning the
algorithm’s parameters may enhance its effectiveness and lead to even better so-
lutions. Extending the evaluation to other optimization problems and comparing
GEA against state-of-the-art algorithms would provide a broader perspective on
its performance and competitiveness. Moreover, integrating GEA with other op-
timization techniques or hybridizing it with machine learning approaches could
further enhance its capabilities. Combining the strengths of genetic engineer-
ing algorithms with other intelligent algorithms may lead to novel hybrid ap-
proaches with improved optimization performance. Lastly, conducting experi-
ments on larger problem instances and assessing the scalability and efficiency
of GEA would be beneficial [40]. Scaling up the problem size would provide
insights into the algorithm’s performance when dealing with more complex and
larger-scale optimization challenges [41].
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