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Abstract. Today, astronomers are faced with the challenge of handling
vast volumes of data, as modern instruments are capable of generating
terabytes of data in a single night. One such instrument is the Zwicky
Transient Facility, an automated sky survey that can detect approxi-
mately a million candidate astrophysical objects among the observed
regions of the night sky in a single night. However, a significant portion
of the detected objects turn out to be artifacts, i.e., phenomena with non-
astrophysical origins. Therefore, specialists must invest time in manually
classifying these objects, as there is currently no efficient method that
can perform this task without human intervention. The goal of this work
is the development of an algorithm to predict whether the light curve
from the Zwicky Transient Facility data releases has a bogus nature or
not based on the sequence of frames. A labeled dataset provided by ex-
perts was utilized, comprising 2230 frames series. Due to the substantial
size of the frame sequences, the application of a variational autoencoder
was deemed necessary for mapping the images into lower-dimensional
vectors. For the task of binary classification based on sequences of com-
pressed frame vectors, a recurrent neural network was employed. Several
neural network models were considered, and the quality metrics were
assessed using k-fold cross-validation. The final performance metrics, in-
cluding ROC — AUC = 0.869 £ 0.016 and Accuracy = 0.804 + 0.021,
suggest that the model has practical utility. The code implementing the
algorithm is available on GitHub.
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1 Introduction

Zwicky Transient Facility (ZTF [1], [2]) is an automated sky survey. The tele-
scope generates a large amount of data every night. The survey data consists of
images capturing specific parts of the sky, which are later used to create data
releases (DRs).

The purpose of creating data releases is to investigate any variable sources
in the sky. The survey frames are processed using the widely-used algorithm
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SExtractor [3], which detects sources and performs photometry on them. Sub-
sequently, all variable sources are assigned a unique object ID (OID), which is
added to the so-called ZTF data releases. It is assumed that there should be no
non-periodic variable objects (such as supernovae, red dwarf flares, etc.) in the
DRs. However, due to the fact that the applied algorithms are not perfect, un-
usual objects are encountered in this data [8,10,4]. This motivates researchers,
even those whose scientific interests are not related to variable stars, to work
with DRs.

Defocusing Track Bad column
Ghost Bad column Track

S/

Fig. 1. Examples of artifacts found within ZTF data. Images size is 28x28 pixels.

Unfortunately, among the ZTF data, so-called artifacts are often encountered
(see Fig. 1). An artifact is commonly referred to as any phenomenon of non-
astrophysical nature. These can be effects related to instrument malfunction
(defocusing, saturated columns in the CCD array, etc.) or effects associated
with external conditions (atmospheric turbulence, clouds, bright satellites, etc.).
Under certain circumstances, these phenomena can be classified as astrophysical
objects by machine learning methods, which significantly complicates working
with ZTF data.

Classifying astrophysical objects is one of the primary and most challenging
tasks when working with DR data because they lack class labels. As a result, in-
stead of directly using a sequence of object images, photometric observations are
often employed. Since the observational properties of many astrophysical classes
have been sufficiently studied, a set of features can be derived from the light curve
(temporal sequence of photometric observations) that allows for their differenti-
ation. Subsequently, classification methods from classical machine learning can
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be applied to the constructed feature sets to solve the classification task. How-
ever, this approach can lead to situations where astrophysical phenomena and
artifacts closely resemble each other in their photometric representation. For ex-
ample, a passing bright satellite may temporarily illuminate a specific region of
the detector, which can be mistaken for a brief flare of a red dwarf, appearing
as a short-lived peak in the light curve. Therefore, when tackling such problems,
specialists need to spend time validating the obtained results. Artifacts can ac-
count for 68% of the total number of objects labeled as astrophysical objects by
machine learning methods [8].

This work is dedicated to implementing an algorithm that would avoid the
involvement of specialists in classifying artifact /non-artifact objects from DR.
Currently, there is no efficient approach that solves this problem.

2 Data

The labeled object dataset was taken from the SNAD Viewer [9] web portal®.
Each object has a unique index, OID, and a set of labels indicating whether it is
an artifact or not, along with additional details about the nature of the object
(e.g., AGN — active galactic nucleus, variable, etc. Similarly, for artifacts: ghost,
defocusing, etc.). For each object, there is a series of telescope images captured
at different times. To obtain a list of links to all available images for a given
OID, an API service? is used.

A telescope frame is an image of size 3072x3080 depicting a portion of the
sky. However, for this task, only a small area within this frame, associated with
a specific object, is of interest. Thus, images are cropped to a size of 28x28 pixels
and normalized.

The dataset contains 2230 objects (image series), including 1150 artifacts
and 1080 astrophysical objects, totaling 1,015,177 images.

One of the main challenges of the task is that objects have a large number of
observations (see Fig. 2), and it is unknown at which specific time points anoma-
lies were observed. Therefore, an algorithm capable of working with sequences
of images rather than individual anomalous images is necessary.

3 Methods

The implemented approach involves two stages. First, a variational autoencoder
(VAE) is trained on all images in the dataset to obtain informative compressed
representations of frames. Then, a recurrent neural network (RNN) is trained
on sequences of these compressed representations to solve the classification task.
Combining these two stages into a single recurrent neural network with convolu-
tional layers at the beginning is not feasible due to computational resource limi-
tations. All neural networks are implemented using the Python library PyTorch.

3 https://ztf.snad.space/
4 http://finder fits.ztf.snad.space/api/docs#operation/Get  URLs_for all
exposures_by object ID api vl urls by oid get
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Fig. 2. Distribution of images number per object.

3.1 Variational autoencoder

The implemented encoder consists of 5 convolutional layers (with image channel
dimensions: 32, 64, 128, 256, 512 respectively) with the LeakyReLU activation
function and batch normalization after each layer. Each output convolutional
layer returns half the size of the input image, so the encoder output is a vector,
whose size is a model parameter. The architecture of the decoder is symmetrical
to that described above, except that transposed convolutional layers are used
instead of convolutional layers.

The VAE was trained on all images from dataset. When selecting the pa-
rameters for the VAE, different levels of image compression were considered. In
machine learning literature, the vector obtained at the output of the encoder
is commonly referred to as the latent state. In Fig. 3, the blue and green lines
represent the loss curves for latent state sizes of 36 and 78, respectively. It can
be observed that increasing the latent state size requires more training epochs.
In this work, a latent state size of 36 proved to be optimal. Image augmentation
through random rotation was also explored (red line in Fig. 3); however, it was
found that this significantly increased the number of required training epochs
without a visible improvement in the model. Therefore, the final model does not
include any augmentations. For model training, the Adam [7] optimizer was used
with a learning rate = 5-10~° for 100 epochs. The core idea of the Adam op-
timizer is to combine adaptive moment estimation with adaptive learning rates
for efficient model optimization in machine learning. The loss function for the
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Fig. 3. Loss functions during training a VAE.

VAE takes the following form:
L = LogCosh(z, &) + wgia - KL(N(p,0)||N(0,1)) =

2 2
lncosh(x — i?) + Wkid - <ln l + ﬂ — 1> R (1)
o 2 2
here, x, & represent the original image and its reconstruction by the decoder,
respectively; i, o are vectors of means and variances obtained from the encoder’s
output; wiig = 8- 1075 serves as the weight coefficient for the Kullback-Leibler
divergence.

By using the compressed representations of the images, it is expected that
the compressed representations of anomalous frames are outliers from the overall
distribution of normal images. After the VAE was trained, the obtained com-
pressed representations of frames were saved. The next stage of the work involved
training a RNN for binary classification.

3.2 Recurrent neural network

The fundamental idea behind RNNs is the utilization of hidden states that cap-
ture information from previous time steps, allowing them to maintain a form of
memory and learn dependencies within sequential data. By using recurrent con-
nections, RNNs can model sequences of arbitrary length, making them powerful
tools for tasks involving sequential information. However, traditional RNNs have
issues with vanishing and exploding gradients, leading to difficulties in learning
long-range dependencies. To address this, various RNN architectures like LSTM
(Long Short-Term Memory; [6]) and GRU (Gated Recurrent Unit; [5]) have
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been developed, which introduce gating mechanisms to better control the flow
of information and mitigate gradient-related problems.

The model takes inputs of size [batch size, sequence length, latent dim],
where latent dim represents the dimensionality of the compressed representa-
tion. Embeddings for object frames, along with their corresponding class labels,
are fed into a RNN. The model parameters are optimized using the Adam opti-
mizer with a learning rate = 10~* for 500 epochs.

Table 1. Model results. The metric values are averaged over 5 test folds, as well as
the standard deviation.

Model name ROC-AUC Accuracy F1-score
GRU 0.825 £ 0.061  0.751 £ 0.073  0.775 + 0.046
bidirectional GRU + Lo 0.869 £+ 0.016 0.804 £+ 0.021 0.809 £ 0.015
GRU + Tversky loss 0.839 + 0.027  0.776 £+ 0.037  0.786 + 0.019
LSTM 0.725 £ 0.085  0.706 £+ 0.098  0.742 + 0.035

The baseline model considered was a GRU layer with a hidden state size of 128,
and the loss function used during training the recurrent neural network was cross-
entropy. In addition to the baseline model, the following variations were explored:
a bidirectional GRU cell with Ly weight regularization (weight decay = 107°);
a GRU layer with a modified loss function (the Tversky Index [11]) term was
added to the loss function); a LSTM layer with the same parameters as the
baseline model.

Bidirectional GRU is different from the regular GRU in that it processes
input sequences in both forward and backward directions, which enables it to
capture contextual information from past and future time steps. However, when
using such an approach in this task, the model experienced overfitting, so Lo
weight regularization was added to it. The table 1 shows the main results for the
considered models. The best result is achieved with a bidirectional GRU layer
with Lo weight regularization.

4 Conclusions

Throughout the course of this study, sequences of ZTF object frames from a
labeled dataset were downloaded and preprocessed. Using the PyTorch library, a
variational autoencoder was implemented and trained, enabling the compression
of images into informative lower-dimensional vectors. Several models of recurrent
neural networks were considered for the task of binary classification based on
sequences of compressed image vectors. The quality metrics of the models were
evaluated using k-fold cross-validation, with the best-performing model achieving
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an ROC — AUC = 0.869 + 0.016 and Accuracy = 0.804 + 0.021. All the code
used in the study is available on GitHub®.

Thus, an algorithm has been developed that aims to classify objects from
ZTF DR in a manner similar to that of a specialist who annotated the training
dataset. This algorithm stands out from others by utilizing sequences of obser-
vation frames rather than photometric time series. While computationally more
challenging, images contain more information about the object’s radiation than
its corresponding photometry.

The next stage of the work will involve: searching for the optimal architecture
for both the autoencoder and the recurrent network; selecting the most effective
loss function for the classifier in terms of our task; analyzing the dependence of
the first and second type errors on the chosen threshold value; conducting compu-
tational experiments using different optimizers. This algorithm can be employed
within the scope of the SNAD® project, as the obtained quality metrics indicate
its practical value. Since the training dataset used in this work was annotated
by specialists from the SNAD project, it is expected that the implementation
of this algorithm into the general pipeline will reduce the number of artifacts
among anomalies. This will enable specialists to detect more new astrophysical
objects.
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Dear Editors,

Please, find below our replies to the referee’s comments. Also, all the changes are
implemented to the manuscript.

Additionally, we’ve updated the author list and acknowledgements.

SUBMISSION: 71
TITLE: Neural network architecture for artifacts detection in ZTF survey

REVIEW 1
----------- Overall evaluation -----------
SCORE: 3 (strong accept)

The Zwicky Transient Facility (ZTF) is the largest (at least in terms of the instrument's field of
view) photometric survey of the sky.

ZTE provides information about variable celestial objects/phenomena, but also contains a
number of artifacts that are not astronomical objects.

The authors of the reviewed paper have developed a methodology for searching for artifacts,
which, obviously, will be in demand by researchers dealing with ZTF data.

The authors write that their dataset contains 1,150 artifacts and 1,080 astronomical objects.

Comment 1:
1) It would be useful to indicate how much these numbers correspond to the actual ratio of
the number of artifacts to the number of real objects in ZTF.

Reply:
Unfortunately, the actual ratio of artifacts to non-artifacts within the ZTF survey data releases

is unknown as they are not labeled. Latest data release of ZTF contains ~4.72 billion light
curves. Such a huge amount of information can not be processed manually, this is one of the
reasons why the use of machine learning algorithms becomes unavoidable.

REVIEW 2
----------- Overall evaluation -----------
SCORE: 1 (weak accept)

The paper describes the developed algorithm that predicts whether a sequence of object
images from the Zwicky Transient Facility survey is an artifact or not. The proposedr method
consists of two parts: building a variational autoencoder and implementing a recurrent neural
network. Both parts are described. The experiment used a labeled dataset, consisting of
2230 objects, approximately half of which are artifacts. The obtained results are presented in
the paper. Some implementations of recurrent neural network (RNN) were considered. It was
demonstrated that the best result (ROC — AUC = 0.869 + 0.016 and Accuracy = 0.804 +
0.021) was obtained with a bidirectional GRU cell with L2 weight regularization.

The paper describes one concrete algorithm for solving rather specific task.



The paper is clear, decently written and can be accepted as a short message.

REVIEW 3
----------- Overall evaluation -----------
SCORE: 3 (strong accept)

CTaTbsl HanNMcaHa Ha akTyarnbHYK TEMY UCMONb30BaHNS AaHHbIX 6onbLnX 0630poB ANs
Knaccudukaumm o6bekToB C NOMOLLbIO CBEPXTOYHbIX HEMPOHHbIX ceTen (CHH). B
yactHocTu, CHH ucnonb3yetcsa ans npoBepkn knaccudumkaumm nepeMeHHbIX 06beKToB, yxe
0oBHapyXeHHbIX naketom SExtracor n nonyyYeHHbIX POTOMETPUYECKNX pAgax TEM Xe
nakeTom.

KoHkpeTHas uenb cTaTbn — coobLleHne o npouecce paspaboTku anroputMma,
npeackasbiBaloLLEro, ABNSETCA NN NocneaoBaTenbHOCTb 306paxeHnn 06beKTOB U3
nccnepoaHusa Zwicky Transient Facility aptedaktom mnnm Her.

OcHoOBHbIe 3aMe4YyaHus

KommeHTapui 1:
1) «Since the methods used in processing ZTF data cannot guarantee absolute accuracy,

artifacts can occur.»

Heobxoanmo yTOYHUTL, O Kakon TOMHOCTU MAET pedb. bonee TO4YHO, TEPMUH TOYHOCTb 34€EChb
He npuMeHuM. MNpruMeHnm TepMuH dpaTanbHas ownbka KanmbpoBku UM OTOMTPUK, UK
nocTpoeHus kpueon bnecka. Kak npaBuno, aptedakTbl HabNaeHNs (KOCMUYECKNE MyYM,
ropsiume nNuKcenbl UTM. YCTPaHATCS KannmbpoBKOW 1 NOrb30BaTeNn Katanoros He
NOAO3PEBAOT O MX CyLLecTBoBaHMU. Ecnun xxe aBTopbl 6epyT Ana noBTopHON 06paboTku
n3obpaxeHus, To 3TN n3obpaxeHus yxxe Bce oTkannbpoBaHbl. [103TOMY CTOUT NOACHUTb YTO
WMEHHO ABNAETCS apTedakToM Afs aBTOPOB

OrtBer:

MpeanoxeHue nameHeHo Ha: “Unfortunately, among the ZTF data, so-called artifacts are
often encountered (see Fig.1).”

Kak nokasbiBaeT Hall aHanus, B katanorax ZTF cogepxutcsa 60onblloe KONM4ecTBo
apTedakToB HabnogeHus, BKNoYasa KOCMUKKN, NPONeThbl CYTHUKOB U T.4.: YacTb U3 HUX
npusBegeHa B katanore aptedaktoB SNAD (https://snad.space/art/).

B cTatbe gobaBneH pMcyHOK C npumMmepammn BCTpevaoLmnxcs aptedakToB.

KommeHTapun 2:
2) CtaTbs ccbinaeTcst Ha METoAbl, U pesynbraTtbl 6e3 06bAcHeHMs geTtanen. boino obl

YMECTHbIM Oonee getanbHO ckasaTb B HYXHbIX MeCTax O CMbICIie MeToda unn anroputma,
eclnin meToaa unun anropntMma He aABrndeTcA O6Ll.l,eI'IpVIH$ITbIM.

OtBeT:
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B cekummn 3.1 pobaeneHo nosicHeHne ana Adam, a Takke 6onee nogpobHo onncaHa paboTta
C BapuaLMOHHbIM 3HKOAEPOM.
B cekunmn 3.2 pobasneHbl noscHeHuns ansg GRU, LSTM.

KommeHTapum 3:

3) AGcTpakT.

«Lenbio gaHHon paboTbl ABNAETCA pa3paboTka anroputma, npeackasbiBatoLLero, ABnseTcs
v nocnefoBaTenbHOCTb M306paxeHn 06beKToB M3 nccnegosaxHna Zwicky Transient
Facility aptedaktom nnu Het.»

lMocnegoBaTenbHOCTb N306paXKeHNn He MOXET ABNATbCA apTedakToM. Heobxogmmo
CKOPPEKTMPOBATh 3TO NpeanoxeHne. Buaumo, camm o0beKTbl Ha M300paXKEHMAX MOTYT
ABNATLCA apTedakTamu.

OtBer:

MpeanoxeHune ucnpaeneHo Ha “The goal of this work is the development of an algorithm to
predict whether the light curve from the Zwicky Transient Facility data releases has a bogus
nature or not, based on the sequence of frames”

KommeHTapwii 4:

4) For example, a passing bright satellite may temporarily illuminate a specific region of
the detector, which can be mistaken for a brief flare of a red dwarf, appearing as a
short-lived peak in the light curve.

Mpwn TMnnMyHoOM akcnosmumm ZTF 30-60 cek, npoxoxaeHne HM3koopbuTansHoro KA B none
3peHuns Teneckona NpMBOANT K NOSBNEHMIO MONOCHI Ha Kagape. He o4eHb MOHATHO Kak
nonoca MoXeT bbITb NpMHATa 3a BCMbILWKY. Bonee Toro, eCTb MeToAbl, KOTOPbIE BbIAENSIOT U
YCTPaHSAIT MMEHHO Takue nornockl Ha Kagpax.

OtBerT:

K coxanenuto, cpegmn gaHHbix ZTF BcTpeyvatoTes Takue aptedakThl (B cTaTbio JobaBneH
PUCYHOK C NpyMepamMu HarnaeHHbIX apTedakToB — Fig.1). doTomeTpunyeckme pagsbl,
npeacrtasneHHble B ZTF, peanbHbIX BCMbIWEK M NOIOC MOTYT BbITb O4EHb NOXOXW ApYr Ha
apyra (cm. Puc.1 Huxe).
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Puc.1 Ceepxy: BCnbilwKa KpacHoro kapnuka. CHu3y: aptedakT Ha n3obpaxeHum - Tpek
ABUXyLLerocs oobekTa.

KoMmmeHTapun 5:
5) The labeled object dataset was taken from the SNAD Viewer*4 web portal
B cHocke 4 npuBegeHa cebinika Ha cTaTtbio. Heobxoammo aatb NpsAMyo CCbISIKY Ha nopran

OtBerT:
WcnpaeneHo

KoMmmeHTapum 6:
6) We considered several models based on the standard GRU layer.
He onpepenena abbpesmatypa GRU, He HanucaHo Huyero npo anroputm Adam




OTBerT:

B cekumn 3.2 pobasneHo noscHeHne ana GRU u LSTM, a Takke gobaBneHbl CCbINKM Ha
cooTBeTCTBYlOWME cTaTbu. B cekumn 3.1 gobasneHo onucaHne ana Adam u
COOTBETCTBYIOLLIAS CCbISIKA.



