
Plausible Reasoning in an Algorithm for
Generation of Good Classification Tests

Xenia Naidenova1[0000−0003−2377−7093], Vladimir
Parkhomenko2[0000−0001−7757−377X], Tatyana Martirova1[0000−0003−0000−6608],

and Alexander Schukin2[0000−0002−9534−824X]

1 Military medical academy, Saint Petersburg, Russia
ksennaid@gmail.com, martta462@yandex.ru

2 Peter the Great St. Petersburg Polytechnic University, Russia
{vladimir.parkhomenko,alexander.schukin}@spbstu.ru

Abstract. The paper is devoted to the application of the plausible rea-
soning principles to symbolic machine learning. It seems for us that the
applications are essential and necessary to improve the efficiency of ML
algorithms. Many such algorithms produce and use rules in the form
of implication. The generation of these rules with respect to the object
classes is discussed. Our classification rules are specific. Their premise
part, called good closed tests (GCTs), should cover as many objects as
possible. One of the algorithms of GCTs generation called NIAGARA
is presented. The algorithm is revisited and new procedures, based on
plausible reasoning, are proposed. Their correctness is proved in propo-
sitions. We use the following rules: implication, interdiction, inductive
rules of extending current sets of goal-oriented objects, rules of pruning
the domain of searching solution. They allow to rise the effectiveness of
algorithms.

Keywords: Plausible reasoning · Closed itemsets · Good diagnostic test
· Good test analysis · Symbolic machine learning.

1 Introduction

In the paper, we propose a new, more efficient version of the algorithm NIA-
GARA that has been proposed in [15] for generating maximally redundant good
tests (GMRTs) introduced in [14]. The increase in the efficiency of the algo-
rithm is based on the introduction of several new implicative rules of plausible
reasoning, which make it possible to use directly the known properties of the
target objects generated in the algorithm. The rules of plausible reasoning play
a huge role in the design of data mining algorithms. In turn, the rules of plausible
reasoning are generated using machine learning methods.

The rules of plausible reasoning are productive in solving the following prob-
lems: forming contexts for the problem being solved, pruning the search space
for solutions, forming descriptions of objects, identifying essential elements in
data processing, extracting relationships between elements in the field of finding

2 X. Naidenova et al.

solutions, interpreting the results obtained, and more. From this point of view,
it is legitimate to consider the rules of plausible reasoning as a system element
in the tasks of constructing data mining algorithms.

The paper is organized as follows. Section 2 gives a short introduction to
plausible reasoning. We discuss only such rules, which are applied in our new
version of NIAGARA. Section 3 gives definitions of GMRTs, Section 4 discusses
applying the plausible reasoning rules in the algorithm NIAGARA-2 for GMRTs
generation and gives a running example. Finally, at the end of the paper, we
discuss some related works.

2 Plausible reasoning Rules

In the paper, we consider the plausible reasoning rules presented as if-then logical
assertions. We divide these rules into the following categories:

– INSTANCES or relationships between objects or facts really observed;
– RULES OF THE 1ST TYPE or logical assertions based on the regular rela-

tionships between objects (or/and their properties);
– RULES OF THE 2ND TYPE or plausible reasoning rules with the help of

which rules of the first type are applied, modified, and mined from data.

A description of these rules and the information of theirs application are
given in [14].

2.1 Rules of the 1st type used in the algorithm NIAGARA-2

Implication The implication rule is a classical logical rule. It has a form like
x, y, z → w, the left and right parts of which are called an antecedent (premise)
and a consequent (conclusion) respectively. If all values in a premise are true,
then the conclusion is true.

Interdiction or forbidden rule The interdiction is a type of implication rule.
It can be regarded as an equation like x, y, z → false (never). One can present
the interdiction via a number of implication, e.g. x, y → not z; x, z → not y;
y, z → not x.

2.2 Rules of the 2nd type used in the algorithm NIAGARA-2

Suppose, that y is a set of attribute values, which are observed simultaneously.
Let p, antecedent(p) and consequent(p) be an implication, its antecedent and
consequent, respectively. Then we can see the following applications of implica-
tion and interdiction.

Implication application If antecedent(p) ⊆ y, then y is extendable by
consequent(p): y ← y ∪ consequent(p). This application uses modus ponens:
if X, then Y ; X; hence Y .

Plausible Reasoning in an Algorithm for Generation of GCTs 3

Interdiction application Assume, that p is z → not k. If antecedent(p) ⊆ y,
then k is the forbidden value for all extensions of y. This application uses modus
ponendo tollens: either X or Y ; X; hence not Y ; either X or Y ; Y ; hence not
X. X and Y are called alternatives.

Later we use these rules to extend elements of initial input set to obtain
GMRTs.

3 Good test analysis

Let us recall main definitions of Good tests analysis [13,15,14].
Suppose, that R and S are a multi-valued table [7] and a set of object indices,

respectively. Then R(k) and S(k) are called as the set of k-object descriptions
and the set of k-object indices, respectively, where k ∈ K is a class of objects,
e.g. "positive" (+) or "negative" (-), in a particular case.

Let FM be R \ R(k), i.e. the set of object descriptions different from a k
class. Denote by U and T the set of attributes and the set of attribute values
(or just "values", for simplicity), respectively. Each value appears at least in one
object description (object, for short) from R. Denote by n and dom(Atr) the
total number of object indices and the domain of an attribute Atr ∈ U .

A Galois connection [16] from attribute values to object indices is given with
a function s(·), which takes t, a subset of the set T of disjoint attribute values,
and returns a subset of object indices. We assume, that attribute values are from
a nominal scale [7].

We call t ⊆ T , s(t) ̸= ∅, a diagnostic test for R(k) iff t ̸⊂ d, ∀d ∈ FM . To
be a diagnostic test t means, that the condition s(t) ⊆ S(k) and an implication
rule p "if t, then k", are satisfied. Obviously, t is an antecedent(p), where p is
a rule of the 1st type.

Denote by DT (k) a set of all diagnostic tests {t | ∀t forR(k)}. If there are
t, d ∈ DT (k), one and only one of the following conditions is satisfied: s(t) ⊂ s(d),
s(d) ⊃ s(t) and s(t) ∼ s(d), where sim stands for the incompatibility relation.

Then a non-empty test t is called a good test for a R(k) iff s(t) ⊆ S(k) and
simultaneously (∀g){s(t) ∪ g}, g ∈ S(k) \ s(t) is not a test for R(k).

A set t ⊆ T of values is called maximally redundant if for any implication
rule Y → z in R we have (Y ⊆ t)→ (z ∈ t).

A Galois connection S → T is given as s(B) = {g | g ∈ S,B ⊆ ti, where ti
is an object description}. Another Galois connection T → S is given as t(s) =
{intersection of all ti | ti ⊆ T, i ∈ s}.

There are two closure operators [7] generalization_of(t) = t′′ = t(s(t)) and
generalization_of(s) = s′′ = s(t(s)). A set t is closed if t(s(t)) = t and s is
closed if s(t(s) = s.

The interconnection between good tests analysis and FCA has been eluci-
dated in [15]. Moreover, in the paper it is shown that maximally redundant
good test are very popular classifiers, e.g. please, see interconnections with other
symbolic classifiers like JSM-hyposeses [12,5].

4 X. Naidenova et al.

4 Algorithm NIAGARA-2 for good tests generation with
plausible reasoning

4.1 An idea of the algorithm

NIAGaRa-2 is a batch algorithm for inferring all GMRTs for a set of positive
(or negative) objects. It is a new variant of a NIAGARA algorithm described
in [14]. For this goal the sequence S0 ⊆ . . . ⊆ Sq ⊆ Sq+1 ⊆ . . . ⊆ Sq+m,
where Sq is the set of all subsets of S(+) of cardinality equal q, is inferred.
The generalization rule is applied to each element (sq, t(sq)), beginning with two
initial sets R(+) = {t1, t2, . . . , ti, . . . , tnt} and S(+) = {1, 2, . . . , i, . . . , nt}, where
nt is the number of positive objects.

The procedure DEBUT (Figure 2-a) forms the extensions of elements of the
initial set S(+) = {1, 2, . . . , i, j, . . . , nt} and returns the set {s12, s13, . . . , sij , . . .},
where sij = {i, j}, 1 < i < j < nt.

If sij = i, j, such that (sij , t(sij)) is not a test for R(+), then it is saved in
the set Q of forbidden pairs of objects. If sij = i, j, such that (sij , t(sij)) is a test
for R(+), then it is generalized (closed) and the result s = generalizationof (sij)
is inserted in S(test).

When DEBUT is over, it is necessary to check whether an element s of
S(test) corresponds to a GMRT for R(+) or not. For this goal, the following rule
is used: if some object j, for j = 1, . . . , nt, belongs to one and only one element
s of S(test), then s cannot be extended and, consequently, s corresponds to a
GMRT and it is deleted from S(test) and inserted into STGOOD.

S(test) is the partially ordered set containing all s = {i1, i2, . . . , iq}, q =
1, 2, . . . , nt, satisfying the condition that (s, t(s)) is a test for R(+) but not a
good one. STGOOD is the partially ordered set containing all s = {i1, i2, . . . , iq},
q = 1, 2, . . . , nt, satisfying the condition that (s, t(s)) is a GMRT for a given set of
positive examples. For every s in S(test), the set ext(s) of all possible extensions
of s, which correspond to tests for R(+), is formed.

The procedure SELECT(s) (Figure 3-a) returns the set select(s) of objects
that are admissible to produce the extensions of s corresponding to tests.

The sets S(test) and STGOOD are lexicographically ordered. Context(s) is
defined as the set of object indices which can be currently used for extending
s ⊆ S(+): context(s) = {{∪s∗}| Prefix(s∗) = Prefix(s), s ≺ s∗}, where Prefix(s)
is the first index in s and ≺ is the symbol of the lexicographical order.

Introducing the concept of context(s) allows the decomposition of the al-
gorithm into independent processes. The set V (s) is determined as the set
of object indices, which must be deleted from context(s) to avoid duplicate
generation. CAND(s) = context(s)\V (s), where V (s) = {∪s∗, s ⊆ s∗, s∗ ∈
{S(test) \ s ∪ STGOOD}}.

The set V (s) is the union of all the set in {S(test)\s∪STGOOD} containing
s, hence, s is in the intersection of these sets. If we want an extension of s not
to be included in any element of {S(test) \ s ∪ STGOOD}, we must use, for
extending s, the object indices not appearing simultaneously with s in the set
V (s).

Plausible Reasoning in an Algorithm for Generation of GCTs 5

Algorithm
Input: R(+), R(−), nt, S(+) = {1, . . . , nt}.
Output: TGOOD

1. DEBUT;
2. while S(test) ̸= ∅ do
3. SELECT(s);
4. EXTENSION(s);
5. ANALYSIS_OF_EXTENSION(s);
6. while STGOOD do
7. TGOOD← {t(s)| s ∈ STGOOD};
8. STGOOD\s;

Fig. 1. Main Algorithm of NIAGARA-2

Select(s) is determined as the set of object indices admissible for extending
s (for this goal the set Q of forbidden pairs of indices is used): select(s) = {i, i ∈
CAND(s) : (∀j)(j ∈ s), i, j /∈ {STGOOD ∨Q}}.

Note that the following plausible rules are applied in NIAGARA-2:

– forbidden rules;
– rule of extending sets with cutting the searching spaces not containing any

solution;
– the implicative rules (based on the known properties of good tests as formal

concepts).

4.2 Pseudo-code of NIAGARA-2 algorithm

In the section, the pseudocode of NIAGARA-2 is given. In comparison with the
previous algorithm version [14] there are the following improvements:

– in Fig. 3-a, the new function “determining context(s)” substitutes the previ-
ous function determining context; context(s) has been defined above;

– in Fig. 2-b, the operation of deleting from S(text) not-extendable sets and
transferring them to STGOOD is proposed, see, please, line numbers 7–12.

Main improvements are presented in corollary 3 in the next subsection. The
positive impact of the improvements is measured in the subsection with the
example discussion.

Under formation of STGOOD, a set s of indices is stored in STGOOD if and
only if it is not included in any collection of this set. In a pseudocode we write
gnrOf instead of generalization_of for short.

4.3 Main features of NIAGARA and NIAGARA-2 algorithms

Our algorithm is based on generation only closed sets. Let a set X be not a closed
one and c(X) = s(t(X)) be its closure. Consider two possibilities: c(X) = X and
X ⊂ c(X). In the first case, X is closed and it is to be extended. In the second
case, X is not closed.

6 X. Naidenova et al.

Procedure DEBUT()
Input: R(+), R(−), nt, S(+) =

{1, . . . , nt}.
Output: S(test)— the set of

collections of objects
to be extended; Q —
the set of forbidden
pairs of objects,
STGOOD.

1. STGOOD, Q, S(test)← ∅;
2. for i ∈ {1, . . . , nt} do
3. sum(i)← 0;
4. for i ∈ {S[1], . . . , S[nt]} do
5. for j ∈ {S[i+ 1], . . . , S[nt]}

do
6. if to_be_test(t{i, j}) =

false then
7. Q← Q ∪ {i, j}
8. else
9. s′′ ← gnrOf({i, j});

10. foreach i in s′′ do
11. sum(i)←

sum(i) + 1;
12. insert s′′ into

S(test) under
lexic. order;

13. foreach i in 1, nt do
14. if sum(i) = 1 then
15. find

s : i ∈ s, s ∈ S(test);
16. insert s into STGOOD

under lexic. order;
17. delete s from S(test);
18. nts← {∪s | s ∈ S(test)};

(a) DEBUT procedure

Procedure
ANALYSIS_OF_EXTENSION()

Input: ext(s), S(test), STGOOD.
Output: the modified sets

S(test) and
STGOOD.

1. if ext(s) = ∅ then
2. if s ⊂ s∗, s∗ ∈ S(test) then
3. transfer s∗ from S(test)

to STGOOD under
lexic. order;

4. delete s;
5. else
6. transfer s from S(test)

to STGOOD under
lexic. order;

7. if ||ext(s)|| = 1 then
8. s = snew, snew ∈ ext(s);
9. if s ̸⊂ s∗, s∗ ∈ S(test) then

10. transfer s from S(test)
to STGOOD under
lexic. order;

11. else
12. transfer s∗ from S(test)

to STGOOD under
lexic. order;

13. else
14. foreach snew in ext(s) do
15. insert snew into S(test)

under lexic. order;
16. delete s;

(b) Analysis of extension

Fig. 2. Procedures DEBUT and Analysis of extension of NIAGARA-2

Proposition 1. If X ⊂ c(X), then t(c(X)) ⊂ t(X) but t(X) ⊂ t(c(X)) →
t(X) = t(c(X)).

Corollary 1. If t(X) = t(c(X)), then c(X) can substitute X ∈ S(test) and X
can be deleted from S(test) without loss of any solution.

Proposition 2. If an object index is included in one and only one set in S(test)
then this set cannot be extended.

Corollary 2. If an object index is included in one and only one set in S(test)
then this set is a good test.

Plausible Reasoning in an Algorithm for Generation of GCTs 7

Algorithm SELECT(s)
Input: s, nts,Q, S(test), STGOOD.
Output: the set select(s) of

objects for possible
extension s.

1. Determining context(s);
2. if context(s) = ∅ then
3. select(s)← ∅
4. else
5. V (s) = {∪s′, s ⊆ s′, s′ ∈

{S(test) \ s ∪ STGOOD}};
6. if V (s) = ∅ then
7. CAND(s)←

context(s);
8. else
9. CAND(s)←

context(s) \ V (s);
10. if CAND(s) = ∅ then
11. select(s)← ∅;
12. else
13. select(s) = {i ∈

CAND(s) |
(∀j)(j ∈ s), {i, j} /∈
{STGOOD ∨Q}};

(a) SELECT procedure

Procedure EXTENSION(s)
Input: s, select(s), S(test), STGOOD.
Output: ext(s) — the set of all

extensions s′ of s such
that t(s′) is a test.

1. ext(s) = ∅;
2. while select(s) ̸= ∅ do
3. foreach j in select(s) do
4. snew ← s ∪ j
5. if

to_be_test(t(snew))=false
then

6. eliminate snew;
7. else
8. snew ← gnrOf(snew);
9. insert snew into ext(s)

under lexic. order;

(b) EXTENSION procedure

Fig. 3. Procedures SELECT and EXTENSION of NIAGARA-2

The following proposition underpins a new reasoning rule increasing the ef-
fectiveness of NIAGARA-2 algorithm in comparison with the previous version.

Proposition 3. If a closed set X of object indices contains a non-extendable
subset Y , then X is also non-extendable.

Corollary 3. If a set X of object indices is a closed one and a test and it
contains a non-extendable subset, then X is a good test.

We call corollaries 1, 2 and 3 as Reasoning rules 1,2 and 3, respectively.
Although the first and second propositions (and corollaries) are new, the appro-
priate rules have been already used in the NIAGARA.

The 3rd rule makes it possible to avoid extending sets containing a non-
extendable subset. This rule, with logical point of view, is a new forbidden rule.
With pattern lattice view, this rule means that if a pattern is non-extendable
then all elements of its principal filter in the pattern lattice are also non-extendable
(forbidden).

Fig. 4 gives an example of working Corollary 1. Green color and solid lines
means the closed sets and links between them (see line diagram in [9]). Black

8 X. Naidenova et al.

color and dashed lines means the non-closed sets and links to theirs closures.
These sets must to be deleted with substituting them by their closures.

1 , 2 , 12 , 14 1 , 4 , 7

1 , 2 1 , 4 1 , 5 1 , 7 1 , 12 1 , 14

Fig. 4. An illustration of using Proposition 1 and Corollary 1

We can delete from consideration sets {1, 2}, {1, 7}, and {1, 14} because
t({1, 2}) = t({1, 2, 12, 14}, t({1, 7}) = t({1, 4, 7}), and t({1, 14}) = t({1, 2, 12, 14})
and, consequently, extending not-closed sets will give the same result as extend-
ing their closed supersets. Table 1 illustrates the preference of applying Boolean
representing the sets of object indices. Data in Table 1 is in accordance with
Fig. 4.

Table 1. An Example of the Boolean representation of sets

1 2 4 5 7 12 14 Closed? To delete?

1 1 1 1 1 1
2 1 1 0 1
3 1 1 1 1
4 1 1 1
6 1 1 0 1
7 1 1 1
8 1 1 0 1

Plausible Reasoning in an Algorithm for Generation of GCTs 9

5 Performance evaluation

5.1 Running example

The data to be processed is given in [14]. Now we give the results of applying the
algorithm NIAGaRa-2 on the set of initial data. Input : S = {1, 2, . . . , 14}; T =
{A1, . . . , A26}; STGOOD = ∅;S(test) = ∅;Q = ∅. Output : after implementation
of the procedure DEBUT we have the same sets S(test), Q, and STGOOD as
in Tables 21, 22, and 23 from [14], respectively. Table 2 presents the extensions
of the elements of S(test). The difference between this table and the appropriate
table from [14] is discussed in the next section. The results from NIAGARA and
NIAGARA-2 are the same, see, please Table 26 in [14].

.

Table 2. The Extensions of the Elements of S(test)

S Context(s) CAND(s) Select(s) Ext(s) Delete s ∈ S(test) STGOOD

1,4 5,7,12 5,12 12 ∅ 1 1,4,7
1,4,7
1,5 12 ∅ ∅ ∅ 1 1,5,12
1,5,12
1,12 ∅ ∅ ∅ ∅ 1
2,3,4 7,8.10 7,8,10 7,8 2,3,4,7 1 2,3,4,7
2,7 8, 10 8 8 2,7,8 1 2,7,8
2,8 10 ∅ ∅ ∅ 1
2,10 ∅ ∅ ∅ ∅ 1 2,10
3,7 8,10,11,12 8,10,11 8,11 ∅ 1 3,7,12
3,7,12
3,8 10,11 10,11 10,11 ∅ 1 3,8
3,10 11 11 11 ∅ 1 3,10
3,11 ∅ ∅ ∅ 1 3,11
4,6,8,11 12 ∅ ∅ ∅ 1 4,6,8,11
4,6,11 12 ∅ ∅ ∅ 1
4,7 8,11,12 8,11,12 8,11,12 4,7,12 1 4,7,12
4,8 11,12 11,12 11 4,8,11 1
4,11 12 12 ∅ ∅ 1
4,12 ∅ ∅ ∅ ∅ 1
7,8 11,12 11,12 11 7,8,11 1 7,8,11
7,11 12 12 ∅ ∅ 1
7,12 ∅ ∅ ∅ ∅ 1
8,10 11 11 ∅ ∅ 1 8,10
8,11 ∅ ∅ ∅ ∅ 1

10 X. Naidenova et al.

5.2 Comparison of NIAGARA and NIAGARA-2 performance

We perform the running example with NIAGARA and NIAGARA-2 to dis-
cover all the GMRTs. The advantages of NIAGARA-2 are determined by two
main optimizations: the context function and the new reasoning rule 3 based on
Proposition 3. To compare the algorithms, we calculate the following measures
of the whole process of GMRTs generation:

1. the general number of objects involved in the contexts (Conts);
2. the general number of objects included in the sets Cand(s) for all extended

collections of objects (SCand);
3. the general number of objects included in the sets Select(s) for all extended

collections of objects (SSelect);
4. the number of objects’ collections to be extended (SExt).

The result of comparison is presented in Table 3.

Table 3. Comparison of NIAGARA and NIAGARA-2

Algorithm Conts SCand SSelect SExt

NIAGARA 59 55 16 25
NIAGARA-2 29 22 14 20

The Const and SCand values are decreased almost at 50% and 40%, respec-
tively. The SSelect value of new algorithm version is not drastically differ from
the previous one. SExt is decreased because of GMRTs, which are transferred
from S(test) to STGOOD based on the new reasoning rule (the appropriate ex-
tensions are omitted). These GMRTS have the following numbers in Table 26
from [14]: 8, 10, 12.

6 Related works

Our prime interest is the methods by which the main problem of algorithms is
solved: how to avoid repetitive generation of the same concept or how to test
the uniqueness of the generated concept. With respect to this problem, some
methods are summarized in [11,4]. There are surveys of closed sets applications
in papers [17].

The significance of using contexts is shown by some refined argument in [6].
Also, we can note that the idea of using decision trees (classification structure)
for an organization principle of mining ontology from texts is proposed in [10].

Reasoning rules are widely used in all the algorithms dealing with generating
frequent closed itemsets. For example, the rule analogous Rule 1 in NIAGARA-2

Plausible Reasoning in an Algorithm for Generation of GCTs 11

is supported by lemma 3 in [18]. However, Reasoning Rules 2 and 3 are original
and used only to generate GMRTs.

In many algorithms, an inductive rule is applied based on a level wise manner
of extending the attributes’ sets, attributes’ values sets or objects (indices of
objects) such that sets of the size q are built from the sets of the size q−1 of the
previous level. Each set can be built if and only if, there are all its proper subsets
at the previous level. In algorithms, the different properties of sets are checked.
If a collection does not possess a required property, then it can be deleted from
consideration. It strongly reduces the number of sets of all the following levels
to be built.

The Level-wise manner of generating itemsets is used for extracting associa-
tion rules from data. Algorithm AIS for mining association is introduced in [1].
The new algorithms the Apriori, AprioriTid, and AprioriHybrid are improved
versions of the first algorithm for mining association rules.

A lattice-theoretic foundation for the task of mining associations based on
the formal concept analysis has been done in [19]. It has been showed that the set
of frequent concepts uniquely determines all the frequent itemsets. The lattice
of frequent concepts can also be used to obtain a rule of generating sets from
which all associations can be derived.

There are two strategies to generate concepts with batch algorithms: de-
scending or top-down and ascending or bottom-up. However, it is important
whether the leading process consists directly in generating all subsets of objects
(extents of concepts) or all subsets of attributes (intents of concepts). Bordat’s
algorithm [3] uses a top-down strategy for inferring concepts in “breadth first”
manner. The leading process of this algorithm is generating the subsets of ob-
jects of a given context with diminishing more and more their power. In Ganter’s
NextClosure algorithm [8], the leading process is the building of lexically ordered
attribute subsets.

We can conclude that each algorithm generating itemsets underlying the for-
mation of logical rules (implication, association rules, functional dependencies,
formal concepts and many others) uses the plausible reasoning rules in one man-
ner or another and this fact gives the right to assert that the algorithms in
question can be considered as models of human thought processes.

Conclusion

We analyzed the application of plausible reasoning in NIAGARA and NIAGARA-
2 for a GMRTs generation. Moreover, some new procedures based on plausible
reasoning help us to make the algorithm NIAGARA-2 be more efficient. The al-
gorithm time performance is improved thanks to the following new procedures:
extending current sets of goal-oriented objects (with the use of implication, based
on the properties of closed good tests, interdictions, rules of extension) and prun-
ing a searching space. Their correctness is presented.

The future works include providing experiments to show the effectiveness of
the optimizations proposed.

12 X. Naidenova et al.

References

1. Agrawal, R., Imieliński, T., Swami, A.: Mining association rules between sets of
items in large databases. In: Proceedings of the 1993 ACM SIGMOD international
conference on Management of data. pp. 207–216 (1993)

2. Birkhoff, G.: Lattice theory, vol. 25. American Mathematical Soc. (1940)
3. Bordat, J.P.: Calcul pratique du treillis de galois d’une correspondance. Mathéma-

tiques et Sciences humaines 96, 31–47 (1986)
4. Carpineto, C., Romano, G.: Concept Data Analysis: Theory and Applications.

John Wiley & Sons, Ltd, Chichester, UK (jul 2004)
5. Finn, V.: On machine-oriented formalization of plausible reasoning in the style of

F.Backon–J.S. Mill. Semiotika i Informatika 20, 35–101 (1983), (in Russian)
6. Galitsky, B., Ilvovsky, D.I., Goncharova, E.: Organizing contexts as a lattice of

decision trees for machine reading comprehension. In: Kuznetsov, S.O., Napoli,
A., Rudolph, S. (eds.) Proceedings of the 10th International Workshop "What can
FCA do for Artificial Intelligence?" co-located with the 31st International Joint
Conference on Artificial Intelligence (IJCAI-ECAI 2022), Vienna, Austria, July 23,
2022. CEUR Workshop Proceedings, vol. 3233, pp. 75–87. CEUR-WS.org (2022),
https://ceur-ws.org/Vol-3233/paper8.pdf

7. Ganter, B., Wille, R.: Formal concept analysis: mathematical foundations.
Springer, Berlin (1999)

8. Ganter, B.: Two basic algorithms in concept analysis. In: Kwuida, L., Sertkaya, B.
(eds.) Formal Concept Analysis. pp. 312–340. Springer Berlin Heidelberg, Berlin,
Heidelberg (2010)

9. Ganter, B., Kuznetsov, S.: Hypotheses and version spaces. In: Conceptual Struc-
tures for Knowledge Creation and Communication, Lecture Notes in Computer
Science, vol. 2746, pp. 83–95 (2003)

10. Goncharova, E., Ilvovsky, D.I., Galitsky, B.: Concept-based chatbot for interactive
query refinement in product search. In: Kuznetsov, S.O., Napoli, A., Rudolph,
S. (eds.) Proceedings of the 9th International Workshop "What can FCA do for
Artificial Intelligence?" co-located with the 30th International Joint Conference
on Artificial Intelligence (IJCAI 2021), Montréal, Québec, Canada, August 21,
2021. CEUR Workshop Proceedings, vol. 2972, pp. 51–58. CEUR-WS.org (2021),
https://ceur-ws.org/Vol-2972/paper5.pdf

11. Kuznetsov, S.O., Obiedkov, S.A.: Comparing performance of algorithms for gener-
ating concept lattices. Journal of Experimental & Theoretical Artificial Intelligence
14(2-3), 189–216 (2002)

12. Kuznetsov, S.: Mathematical aspects of concept analysis. Journal of Mathematical
Sciences 80(2), 1654–1698 (1996)

13. Naidenova, X.A., Polegaeva, J.G.: An Algorithm of Finding the Best Diagnostic
Tests. In: Mintz, G., Lorents, E. (eds.) The 4-th All Union Conference "Application
of Mathematical Logic Methods". pp. 87 – 92 (1986), (in Russian)

14. Naidenova, X.: An incremental learning algorithm for inferring logical rules from
examples in the framework of the common reasoning process. In: Triantaphyllou,
E., Felici, G. (eds.) Data Mining and Knowledge Discovery Approaches Based on
Rule Induction Techniques, Massive Comp., vol. 6, pp. 89–147. Springer (2006)

15. Naidenova, X., Buzmakov, A., Parkhomenko, V., Schukin, A.: Notes on relation be-
tween symbolic classifiers. In: CEUR Workshop Proceedings, CEUR-WS. vol. 1921,
pp. 88–103 (2017)

16. Ore, O.: Galois connections. Trans. Amer. Math. Soc 55, 494–513 (1944)

https://ceur-ws.org/Vol-3233/paper8.pdf
https://ceur-ws.org/Vol-2972/paper5.pdf

Plausible Reasoning in an Algorithm for Generation of GCTs 13

17. Poelmans, J., Ignatov, D.I., Kuznetsov, S.O., Dedene, G.: Formal concept analysis
in knowledge processing: A survey on applications. Expert Systems with Applica-
tions 40(16), 6538 – 6560 (2013)

18. Wang, J., Han, J., Pei, J.: Closet+: Searching for the best strategies for mining
frequent closed itemsets. In: Proceedings of the Ninth ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining. pp. 236–245. KDD ’03,
Association for Computing Machinery, New York, NY, USA (2003). https://doi.
org/10.1145/956750.956779, https://doi.org/10.1145/956750.956779

19. Zaki, M.J., Ogihara, M.: Theoretical foundations of association rules. In: 3rd ACM
SIGMOD Workshop on Research Issues in Data Mining and Knowledge Discovery
(June 1998)

https://doi.org/10.1145/956750.956779
https://doi.org/10.1145/956750.956779
https://doi.org/10.1145/956750.956779
https://doi.org/10.1145/956750.956779
https://doi.org/10.1145/956750.956779

	Plausible Reasoning in an Algorithm for Generation of Good Classification Tests

